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Abstract

Attention allows us to focus sensory processing on behaviorally relevant aspects of the visual world. Directing

attention has been associated with a number of changes in sensory representation including multiplicative gain as

well as shifts in the size and location of neuron receptive fields in early visual cortex. But, which, if any, of these

physiological effects can account for the behavioral benefits of attention? Here we use a large scale computational

model of primate visual cortex to perform a set of experiments in which we decouple changes in spatial tuning

from changes in gain. We show that increased gain at cued locations in a neural network observer model mimics

the improvement of human subjects on an attentional task with a spatial cue. Increasing gain resulted in changes

in receptive field size and location similar to physiological effects, yet when we forced the model to use only

these spatial tuning changes the model failed to produce any behavioral benefit. Instead, we found that gain

alone was both necessary and sufficient to explain behavioral improvement during attention. Our results suggest

that receptive field shifts are a result of the signal gain that boosts behavioral performance rather than the core

mechanism of spatial attention.
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Introduction1

Deploying goal-directed spatial attention towards important visual locations allows observers to detect targets2

with higher accuracy (Hawkins et al., 1990), faster reaction times (Posner, 1980), and higher sensitivity (Sagi &3

Julesz, 1986) providing humans and non-human primates with a mechanism to select and prioritize spatial visual4

information (Carrasco, 2011). At the same time as behavioral responses are enhanced, sensory responses near5

attended locations are amplified (Connor et al., 1996; McAdams & Maunsell, 1999) and the receptive fields of6

neural populations change shape and size, typically shrinking and shifting towards the target of attention (Anton-7

Erxleben et al., 2009; Ben Hamed et al., 2002; Kay et al., 2015; Klein et al., 2014; van Es et al., 2018; Vo et al.,8

2017; Womelsdorf et al., 2006). These changes in neural representation are thought to contribute to behavioral9

enhancement, but because gain effects and changes in spatial properties of receptive fields co-occur in biological10

systems, it is not possible to disentangle which of these changes gives rise to improved behavior. Computational11

models of the visual system allow us to design experiments to independently examine the effects of such changes12

(Eckstein et al., 2000; Lindsay & Miller, 2018; Pelli, 1985).13

Shrinkage and shift of receptive fields toward attended targets has been observed in single unit recordings (Anton-14

Erxleben et al., 2009; Womelsdorf et al., 2006) and in population activity measured with functional imaging15

(Fischer & Whitney, 2009; Klein et al., 2014; van Es et al., 2018; Vo et al., 2017). These physiological changes16

could cause behavioral enhancement through a variety of possible mechanisms (Anton-Erxleben & Carrasco, 2013):17

receptive field changes might magnify the cortical representation of attended regions (Moran & Desimone, 1985),18

select for relevant information (Anton-Erxleben et al., 2009; Sprague & Serences, 2013), reduce uncertainty about19

spatial position (Vo et al., 2017), increase spatial discriminability (Fischer & Whitney, 2009; Kay et al., 2015), or20

change estimates of perceptual size (Anton-Erxleben et al., 2007). Compression of visual space is also observed21

just prior to saccades and thought to shift receptive fields towards the saccade location (C. L. Colby & Goldberg,22

1999; Merriam et al., 2007; Zirnsak et al., 2014) and maintain a stable representation of visual space (C. Colby,23

Goldberg, et al., 1992; Kusunoki & Goldberg, 2003; Ross et al., 1997; Tolias et al., 2001). It is also possible that24

shift and shrinkage of receptive fields occur as a side effect of amplifying neural responses in an asymmetrical25

way across a receptive field (Klein et al., 2014), raising the question of how these two effects combine to enhance26

perception.27

We took a modeling approach to address whether receptive field shift and shrinkage are responsible for the28

behavioral enhancement of spatial attention or a side-effect of neural gain. We modified a convolutional neural29

network (CNN) to test various hypotheses by implementing them as elements of the model architecture. CNN30

architectures can be designed to closely mimic the primate visual hierarchy (Kubilius et al., 2018; Yamins et31
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al., 2014). Training “units” in these networks to categorize images leads to visual filters that show a striking32

qualitative resemblance to the filters observed in early visual cortex (Krizhevsky et al., 2012) and the pattern of33

activity of these units when presented with natural images is sufficient to capture a large portion of the variance34

in neural activity in the retina (McIntosh et al., 2016), in early visual cortex (Cadena et al., 2019), and in later35

areas (Cichy et al., 2016; Eickenberg et al., 2017; Güçlü & van Gerven, 2015; Khaligh-Razavi & Kriegeskorte,36

2014; Yamins et al., 2014). Cortical responses and neural network activity also share a correlation structure across37

natural image categories (Storrs et al., 2020). These properties of CNNs make them a useful tool which we can38

use to indirectly study visual cortex, probing activity and behavior in ways that are impractical in humans and39

non-human primates (Lindsay & Miller, 2018).40

Using simulations based on a CNN observer model we found that the benefits of spatial attention are explained41

by multiplicative gain alone. We designed a simple cued object-detection task and measured improved human42

performance on trials with focal attention. Using a CNN whose architecture was designed to maximize similarity43

with the primate visual stream we measured a similar improvement in detection performance when a Gaussian44

gain augmented inputs coming from a “cued” location. We found that the network mirrored the physiology of45

human and non-human primates: units shifted their center-of-mass toward the locus of attention and shrank in46

size, all in a gain-dependent manner. We isolated each of these physiological changes to determine which, if any,47

could account for the behavioral effects. A model with only gain reproduced the behavioral benefits of attention48

while models with only receptive field shifts or only changes in receptive field sensitivity were unable to provide49

any behavioral benefit. We conclude that gain changes alone are both necessary and sufficient to account for the50

behavioral benefits of spatial attention.51

Results52

We characterized the ability of human observers to detect objects in a grid of four images, with or without prior53

information about the object’s possible location (Fig. 1). Observers were given a written category label, e.g.54

“ferris wheel”, and shown five exemplar images of that category (Category intro, 1a). This was followed by a55

block of 80 trials in which observers tried to detect the presence or absence of the target category among the four56

images in the grid (Each trial, 1a). Half of the 80 trials had focal cues and 50% of the focal (and distributed)57

trials included a target image. On focal trials a cue indicated with 100% validity the grid quadrant that could58

contain a target while on distributed trials no information was given as to where an image of the target category59

could appear. Distractor images were randomly sampled from the nineteen non-target image categories. Stimulus60
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durations were sampled uniformly from 1 (0.008 s), 2 (0.016), 4 (0.033), 8 (0.066), 16 (0.133), or 32 (0.267)61

frames (Stimulus, 8.33 ms per frame, 1a). Image grids were masked before and after stimulus presentation62

by shuffling the pixel locations in the stimulus images, ensuring that the luminance during each trial remained63

constant. Observers had 2 s to make a response and each trial was followed by a 0.25 s inter-trial interval.64

Observers completed one training block on an unused category prior to data collection.65

Human observers improved their performance on this detection task when given a focal cue indicating the potential66

location of a target (Fig. 1b). At a stimulus duration of 8 ms (one frame) observers were near chance performance67

regardless of cueing condition. On distributed trials observers exceeded threshold performance (d′ = 1) at a68

stimulus duration of 155 ms, 95% CI [135, 197]. For focal trials, the same threshold was reached with only a 3869

ms [32, 43] stimulus duration, demonstrating a substantial performance benefit of focal cueing. We characterized70

this performance benefit by fitting a logarithmic function to the data, scaled by a parameter α for the focal71

condition. We found that d′ in the focal condition was higher than in the distributed condition, average increase72

across observers α = 1.67× [1.57, 1.74]. Across all observers the d′ function was best fit as:73

d′(ms) = α log(163.588ms+ 1) (1)

Using a drift diffusion model we found that the majority of this performance benefit came from the focal cue,74

rather than speed-accuracy trade off. We assessed this by fitting a drift diffusion model to the reaction time and75

choice data (Wagenmakers et al., 2007). Drift diffusion models assume that responses are generated by a diffusion76

process in which evidence accumulates over time toward a bound. We used the equations in Wagenmakers et77

al. (2007) to transform each observer’s percent correct, mean reaction time, and reaction time variance for the78

twenty categories and two focal conditions into drift rate, bound separation, and non-decision time. The drift rate79

parameter is designed to isolate the effect of external input, the non-decision time reflects the fastest responses an80

observer makes, and the bound separation is a proxy for how conservative observers are. Comparing the drift rate81

parameter we observed a similar effect to what was described above for d′: the average drift rate across observers82

in the focal condition was 1.61×, 95% CI [1.39, 1.77] the drift rate in the distributed condition. This suggests83

that the majority of the performance gain observed in the d′ parameter came from increased stimulus information.84

We did find that the other parameters of the drift diffusion model were also sensitive to duration and condition,85

but in opposite directions. We found larger bound separation at longer stimulus durations and on focal trials86

(focal bound-separation 1.57× distributed [1.37, 1.75]), consistent with observers being more conservative on87

trials where more information was available. But this increase in cautiousness was offset by a shorter non-decision88

time on focal trials (0.26 s) compared to distributed (0.38, [0.34, 0.41]).89
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Ferris Wheel
Search for:

Ready?

. . .

Examples (5x)

Category

80 trials
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Each trial
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Delay
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Cue zoom
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Variable
duration

Variable
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0.75 s

0.75 s
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Until keypress
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0.25 s
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Focal trial, 50% Distributed trial, 50%
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Response

Inter-trial interval

Category intro

Figure 1: Cued object detection task. (a) Observers were asked to perform object detection with or without a
spatial cue. At the start of a block, observers were shown five examples of the target category. This was followed
by 80 trials: 40 with a spatial cue indicating the possible target quadrant and 40 with no prior information.
Stimulus presentation was pre and post-masked. The stimuli consisted of a composite image of four individual
object exemplars. The target category was present in 50% of trials and always in the cued location on focal trials.
Human observers used a keyboard to make a fast button response to indicate the target presence before moving
on to the next trial. (b) Human observers showed a substantial improvement in performance when given a focal
cue indicating the quadrant at which the target might appear. Vertical line at 64 ms indicates the duration at
which the best-fit d′ curve for the Distributed condition matched CNN model performance without gain. Markers
indicate the median and error bars the 95% confidence intervals.
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Having shown that a spatial cue provides human observers with increased stimulus information in this task, we90

next sought to show that a neural network model of the human visual stream could replicate this behavior under91

similar conditions. We used a convolutional neural network (CNN) model, CORnet-z (Kubilius et al., 2018), a92

neural network designed to mimic primate V1, V2, V4, and IT and optimized to perform object recognition for93

images at a similar scale to our task. We added to this model a set of output layers to predict the presence of94

the twenty object categories, thus creating a neural network observer model, i.e. a model designed to idealize95

the computations performed by human observers performing the 4-quadrant object detection task. We applied96

the observer model to a task analogous to the one human observers performed (Fig. 2). The prediction layers97

added to the end of the model provided independent readouts for the presence or absence of the different target98

categories (Linear classifier, Fig. 2c). These output layers were trained on a held out set of full-size images from99

each category.100

To examine the computational mechanisms that could underlie the performance benefit of the focal cue we added101

a multiplicative Gaussian gain centered at the location of the cued image (Fig. 2b). We applied this gain at102

the first layer of the model, analogous to a gain signal modulating responses in primate V1, and tested various103

strengths of gain.104

To align the human and model performance for this task we took the performance of the model in the distributed105

condition (Distributed, Fig. 2a) and found the stimulus duration at which subjects in the distributed condition106

of the human data matched this performance level (64 ms, Fig. 1b). We then scaled up the amplitude of the107

Gaussian gain incrementally and found that we could mimic the performance enhancement of attending from the108

human data by setting the maximum of the Gaussian gain field to approximately 4×. The model with this level109

of gain had a median AUC across categories of 0.80, 95% CI [0.77, 0.82] compared to 0.71 [0.67, 0.72] without110

gain and a median AUC improvement of 0.09 [0.08, 0.12] within each category.111

The gain strengths necessary to induce the behavioral effect in the neural network observer model were relatively112

large compared to the gain due to directed attention observed in measurements of single unit (Luck et al., 1997;113

Treue & Trujillo, 1999) and population (Birman & Gardner, 2019) activity. We attribute this difference to the114

lack of any non-linear “winner-take-all” type of activation in the CNN. In the primate visual system, it is thought115

that non-linearities such as exponentiation and normalization can accentuate response differences (Carandini &116

Heeger, 2012) and act as a selection mechanism for sensory signals (Pestilli et al., 2011). We tested whether117

similar non-linear mechanisms would allow for smaller gain strengths to be amplified to the range needed by118

our model by raising the activations of units by an exponent before re-normalizing the activation of all units at119

the output of each layer (see Methods for details). This has the effect of amplifying active units and further120
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Avg.
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112x112x64 
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Figure 2: Neural network observer model. (a) Using a Gaussian gain the neural network observer was able
to replicate the behavioral benefit of spatial attention for human observers. Human performance is shown at a
stimulus duration of 64 s which provided the closest match to the convolutional neural network (CNN) performance
without gain. Markers indicate the median and error bars the 95% confidence intervals. (b) The Gaussian gain was
implemented by varying the maximum strength of a multiplicative gain map applied to the “cued” quadrant. (c)
The gain was applied prior to the first layer of the convolution neural network (CNN). The neural network observer
model consisted of a four layer CNN with linear classifiers applied to the output layer. Individual classifiers were
trained on examples of each object category. (d) Each of the four convolutional layers consisted of a convolution
operation followed by max pooling and a rectified linear unit. Unit activations were measured after the convolution,
prior to the max pooling step.
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suppressing inactive ones. Using this approach we found that a relatively small gain of 1.25× combined with an121

exponent of 3.8 led to a much larger effective gain of 2.09× after just one layer (Fig. 3j). This form of non-linearity122

is consistent with the finding that static output non-linearities in single units range from about 2 to 4 (Albrecht &123

Hamilton, 1982; Gardner et al., 1999; Heeger, 1992; Sclar et al., 1990) and thus this simulation suggests a plausible124

physiological mechanism by which the larger gains predicted by our model could be implemented. Repeated use of125

exponentiation and normalization in successive layers of the visual system could produce an even larger effective126

gain. To avoid training a new convolutional neural network and possibly violate the close relationship between the127

primate visual system and the CNN we studied, we continued our analysis without introducing an exponentiation128

and normalization step.129

The Gaussian gain could have its effect on the neural network observer model’s performance by increasing the130

activation strength of units with receptive fields near the locus of attention. These changes in activation strength131

might directly affect behavior, or work indirectly through mechanisms such as changes in receptive field size,132

location, or spatial tuning. We observed all of these effects in our model (Fig. 3). To measure receptive fields133

we computed the derivative of each unit with respect to the input image and then fit these with a 2D Gaussian134

(see Methods for details). We found that the gain caused receptive fields to shift and shrink toward the locus of135

attention (Fig. 3a,b). The receptive field shift and shrinkage were magnified in deeper layers of the model (Fig.136

3d,e) consistent with physiological observations (Klein et al., 2014). The gain in activation strength propagated137

through the network without modification (Fig. 3f). To measure the effective gain experienced by the layer four138

units (Fig. 3i) we computed the ratio of the standard deviations of unit activations after the nonlinear ReLU139

function (Fig. 2d) with and without gain applied. The gain also produced a non-linear change in the information140

represented by units late in the model (Fig. 3c), reflecting a change in units’ spatial tuning rather than simply a141

propagation of gain. We measured this by comparing the correlation of layer 4 unit activations with and without142

the Gaussian gain. All three observed effects: receptive field shift, shrinkage and expansion, and effective gain143

were directly related to the gain strength at the input layer (Fig. 3g-i). All of these changes have been proposed144

as mechanisms that could account for the behavioral benefits of attention. We designed models to try to isolate145

these effects with the goal of testing their independent contributions to behavior.146

We next sought to test whether receptive field shifts alone could account for the behavioral benefits of the neural147

network observer model. To do this, we built a model variant that could shift receptive fields without introducing148

gain. To develop an intuition for how this could affect perceptual reports, consider a CNN with just four units149

in a 2 × 2 grid with each unit having its receptive field centered on one image in the composite. When shown150

a composite grid of four images, a logistic regression using the output of these four units would receive one151

quarter the information it expects from being trained on full size images. Shifting the receptive fields of the152
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Figure 3: Effects of Gaussian gain on neural network units. (a) The Gaussian gain applied to Layer 1 units caused
the measured receptive field (RF) of units in Layer 4 to shift (black ellipse, original; brown ellipse, with gain)
toward the locus of attention (black ×). (b) A 2D spatial map demonstrates the effects of Gaussian gain in
Layer 4: shift of RF center position (black arrows), shrinking RF size near the attended locus (blue colors) and
an expansion of size near the gain boundaries (red colors). (c) A spatial correlation map of the 7×7×512 output
layer between the focal and distributed conditions demonstrates that the information content of the output layer
has been affected by the Gaussian gain in ways beyond simple scaling. (d,e) Scatter plots demonstrate that each
layer magnifies the effect of the gain on RF shift and RF size. The RF shift percentages are the ratio of pixel shift
at the peak of the curve relative to the average receptive field size, measured as the full-width at half-maximum.
(f) Later layers do not magnify the effective gain (shown for an 11× gain), which stays constant across layers.
Gain strength does influence the size of RF position shifts (g), RF size (h), and effective gain (i). (j) Adding
an additional non-linear normalizing exponent at the output of each layer allows for much smaller gains to be
magnified across layers.
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three non-target units to overlap more with the cued image could add additional task-relevant information to the153

output.154

We designed a variant of our model that could be used to test the hypothesis that receptive field shifts alone155

are responsible for the behavioral enhancement (Fig. 4). In this model we re-wired the units in the first layer156

to reproduce the effect of Gaussian gain on receptive fields in the fourth layer based on our measurements of157

receptive field shift in the Gaussian gain model, as reported in Figure 3g. To mimic those shifts, we changed158

the connections between the input image pixels and layer one (Fig. 4a). This manipulation worked as designed159

and changed the receptive field locations and size (Fig. 4b-d) but since no gain was added to the model, the160

overall responsiveness of units remained constant (Fig. 4e). Because receptive field shifts due to gain are not the161

result of actual rewiring it is unsurprising that the shift and shrinkage in this model variant are only qualitatively162

matched to those caused by the original Gaussian gain. Note that the effective gain in layer four did change, a163

result of the units receiving different inputs, but the average change across images was zero.164

We found that the model with receptive field shifts but no gain had no effect on task performance, strong evidence165

against the hypothesis that receptive field shifts are the key to understanding the effects of spatial attention (Fig.166

4f). The model imitating shifts from 4× Gaussian gain had a median AUC across categories of 0.71, 95% CI167

[0.66, 0.73] compared to 0.71 [0.67, 0.72] with no attention and a median change in AUC of -0.01 [-0.02, 0.01]168

within each category.169

Another way to understand the possible effect of the Gaussian gain on task performance is to note that the170

spatial tuning profile of units is “shifted” towards the locus of attention: sensitivity is enhanced closer to the locus171

of attention, but the receptive field itself has not truly moved in the manner studied by the previous model. If172

different parts of a receptive field receive asymmetrical gain, as expected for Gaussian gain, then the local structure173

of the receptive field has been changed (Fig. 5a). We designed another model variant to test the hypothesis that174

these local sensitivity shifts alone might be sufficient to explain the behavioral effect without inducing receptive175

field shifts or gain. To implement this model at layer L, we examined the effect of the Gaussian gain on each unit176

(green differential gain, Fig. 5a). We normalized this differential gain within each unit’s receptive field to prevent177

any overall gain effect and re-scaled the units kernel accordingly. Overall this manipulation of each unit’s kernel178

preserved a portion of the receptive field shift effect but guaranteed that there was no effective gain.179

The sensitivity shift model was designed to only change the spatial tuning of individual units without inducing180

gain, which naturally caused some shifts in the measured receptive field size and location (solid lines and markers,181

Fig. 5b-d) but these were smaller than the effects observed under Gaussian gain (dashed lines). The normalization182

prevented the model from introducing any spatial pattern of gain change (Fig. 5e). Note that there were still183
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Original RF

Shifted RF

Observed
layer 4
RF shifts

Rewire layer 1
units to match
observed shifts

Shift pattern
reproduced
at layer 4

Figure 4: Receptive field shift model. (a) To mimic the effects of the Gaussian gain on receptive field position
without inducing gain in the model we re-assigned the inputs to units in Layer 1. This re-assignment was performed
so that the pattern of receptive field shift in Layer 4 would match what was observed when the Gaussian gain
was applied. (b) The observed pattern of receptive field shifts and shrinkage is shown for a sample of units in
layer 4, qualitatively matching the effects of the Gaussian gain. (c) RF shift is shown (solid lines and markers)
compared to the effect in the Gaussian gain model (dotted lines). (d) Conventions as in c for the RF size change.
(e) Conventions as in c,d for the effective gain of units. (f) The behavioral effect of shifting receptive fields is
shown to be null on average across categories when compared to the effect of Gaussian gain. Markers indicate
the median and error bars the 95% confidence intervals.
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Figure 5: Sensitivity-shift model. (a) We adjusted the kernels of each convolutional neural network unit according
to the effect of a Gaussian gain, subtly shifting the the sensitivity within individual units. To avoid inducing a
gain change we then normalized each units output such that the sum-of-squares of the weights was held constant,
ensuring the local gain at that unit remained at 1×. This model was implemented individually at each layer,
replicating the effect of a Gaussian gain of 1.1× to 11× as well as at all layers at once. (b-f) conventions as in
Fig. 4.
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small changes in overall sensitivity of units in this model, for example, the 4× model had an average gain of 1.08,184

95% CI [1.07, 1.09] across all units, which we attribute to the fact that inputs to a unit may exhibit correlations185

due to spatial structure. These receptive field changes and small gain effects were distinct from those observed186

under Gaussian gain (Fig. 5c-e).187

The sensitivity shift model, like the receptive field shift model, was unable to account for the behavioral effects of188

the Gaussian gain. No matter how deep in the model the sensitivity shift was applied, and even when applied at189

all layers, the average performance across categories remained flat (Fig. 5f). Compared to the median distributed190

AUC across categories of 0.71 [0.67, 0.72], the sensitivity model applied to all layers had a median AUC across191

categories of 0.69 [0.65, 0.72] when imitating gain of 1.1×, 0.70 [0.65, 0.72] for 2× gain, 0.69 [0.65, 0.71] for192

4× and 0.66 [0.63, 0.69] for 11×. Each of these conditions resulted in a median AUC change within category of193

-0.02 [-0.03, 0.00], -0.01 [-0.03, 0.00], -0.02 [-0.04, -0.01], and -0.04 [-0.05, -0.03], respectively. When applied194

to early layers we observed a slight drop in performance, which we attribute to how this model directly alters the195

kernels in the CNN. This breaks the assumption that the CNN kernels at each layer are consistent with those that196

were optimized when the model weights were trained.197

Having ruled out that receptive field shift or changes in spatial tuning could account for the behavioral effect, we198

next designed a model to amplify signals in the cued quadrant without other effects and found that this model199

was able to explain the behavioral effects of attention. In all of the models explored so far an asymmetry in200

gain was created within the receptive fields of the units. To remove this effect we flattened the gain within the201

cued quadrant (Fig. 6a) by setting the gain at each pixel to the average of the Gaussian gain across the entire202

quadrant. By itself, this change has the unintended consequence that units centered in an uncued quadrant but203

with receptive fields overlapping the cued quadrant will still shift in a gain-dependent manner. To remove this204

effect, we split the CNN feature maps into the four quadrants and computed these separately with padding and205

concatenated the results. This forces all units in the model to receive information about only a single quadrant.206

The zero padding at the borders causes receptive field shift, but these are now independent of the gain strength.207

Using the gain-only model we were able to reproduce the behavioral effect of the original Gaussian gain (Fig. 6).208

By design, the model induced the same pattern of receptive field shift and size change at all gain strengths (Fig.209

6b-d) and a flat effective gain within the cued quadrant (Fig. 6e). We found that increasing the strength of a210

flat gain was sufficient to capture the full behavioral effect of the original model (Fig. 6f). The median AUC211

across categories of the 4× flat gain model was 0.78, 95% CI [0.76, 0.83] compared to 0.80 [0.77, 0.82] for the212

4× Gaussian gain model. The confidence intervals in flat gain and Gaussian gain performance overlapped at all213

gain strengths, with a difference of 0.00 [-0.00, 0.02] at 1.1× gain, -0.01 [-0.02, 0.00] at 2× gain, -0.01 [-0.02,214
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Bound between
simuli

Region under
strong gain field

Zero inputs across
stimulus border

×

Flat Gain
       Field

β

1

Multiplicative
Attention

Stregth

Gain-sensitive
RF shift

Gain-independent
RF shift

Figure 6: Gain-only model. (a) To create a gain effect without modifying the receptive fields of units we applied
a flattened gain field, with the gain set to the average of the original Gaussian gain for each attention strength.
The flat gain alone causes units to shift their receptive field at the boundary between the four stimulus quadrants,
to modify gain while ensuring shifts were gain-independent we computed the four quadrants separately with zero
padding and then concatenated the results. (b-f) conventions as in previous figures.
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0.00] at 4× gain, and 0.02 [0.00, 0.04] at 11× gain.215

Having found that the behavioral enhancement could be explained not by receptive field changes, but instead216

by the change in the overall activation strength, we asked whether this increased activation strength propagated217

through the network was both necessary and sufficient to explain behavioral enhancement. To test necessity and218

sufficiency we ran the task images through the Gaussian gain model (first row, Fig. 7a) and measured the effective219

gain propagated to units in the final layer output (7 × 7 × 512, before averaging). We averaged these effective220

gains over features to obtain a propagated gain map (Layer 4 feature map, 7 × 7, Fig. 7b). To test the hypothesis221

that this propagated gain was sufficient to account for the behavioral effect we re-applied it to the output layer222

of a model with no gain applied.223

We found that the propagated gain map, when used to multiply the outputs of a model with no Gaussian gain224

(Multiply by propagated gain, Fig. 7a) was sufficient to reconstruct the behavioral benefits of Gaussian gain225

applied to the input (Propagated gain vs. Gaussian gain, Fig. 7c). The median AUC across categories using the226

propagated gain map was 0.72, 95% CI [0.68, 0.75], compared to 0.71 [0.67, 0.72] in the distributed model. The227

propagated gain map is not a perfect replacement for the Gaussian gain and we found that within categories there228

was a median drop in AUC within categories of -0.02 [-0.03, 0.01] when replacing the full Gaussian gain model229

with the propagated map multiplication.230

To test the hypothesis that the propagated gain was necessary to account for the behavioral effect we divided231

the final layer activations by the propagated gain map (Divide by propagated gain, Fig. 7a). We found that the232

behavioral effect of an early gain was reversed by this manipulation (Removed gain vs. Distributed, Fig. 7c). The233

median AUC across categories after dividing out the propagated gain was 0.72, 95% CI [0.68, 0.75], compared234

to 0.71 [0.67, 0.72] in the distributed condition. Dividing by the propagated map did not perfectly reverse the235

Gaussian gain, we found a median AUC improvement within categories of 0.02 [0.01, 0.03].236

Discussion237

Human observers are more accurate when trying to detect objects at a cued location. Our results demonstrate238

that this behavioral benefit can also be observed in a neural network model of visual cortex when a Gaussian gain is239

applied over the pixels of a “cued” object. To determine the source of this behavioral benefit we explored different240

mechanisms of attention in a series of neural network observer models. In the shift-only model we re-wired units241

to move receptive fields without introducing gain and found that this produced no behavioral benefits. In the242
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Multiply by
propagated gain

Divide by
propagated gain

No true gain

Observe
propagaged

gaussian gain

With true
gain

Figure 7: Gain is both necessary and sufficient to explain the behavioral effects of attention. (a) To test necessity
and sufficiency of gain on performance we propagated the effect of Gaussian gain through the model and measured
the effective gain at the output layer. (b) We averaged the effective gain across features to obtain a “propagated
gain map”. To test sufficiency we multiplied the output of a model with no true gain by the propagated gain map.
To test necessity we divided the output of a model with true gain by the propagated gain map. (c) Multiplying the
output by the propagated gain recovered the effect of Gaussian gain, while dividing removed this effect, confirming
that gain was both necessary and sufficient to account for the behavior. Markers indicate the median and error
bars the 95% confidence intervals.
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sensitivity-shift model we modified the spatial tuning of individual units to mimic the effect of gain but again found243

no behavioral benefits. It was only by applying a gain while keeping receptive field properties stable that we were244

able to reproduce the behavioral benefits of the original Gaussian gain. In line with this, we found that applying245

gain at the final layer was both necessary and sufficient to account for the behavioral benefits of spatial attention.246

Our results demonstrate that spatial gain is sufficient to increase the weight of relevant visual information on247

decision-making. While gain can change receptive field properties, our results suggest that these are secondary248

effects and only a consequence of applying gain, rather than the cause of the behavioral improvements as others249

have suggested.250

We tested our hypothesis using an image-computable model, which has the benefit that all of the computational251

steps from sensory input to decision making are constrained by the model architecture. In our case, the advantage252

of this type of model is that the model architecture encodes the relationship between gain and receptive field253

shift: any time a gain occurs in an asymmetrical manner across a receptive field, downstream units will show an254

apparent “shift” in position. Many of the previous studies which have probed the mechanisms of spatial attention255

have used computational models which linked only the measurements which they made in their experiments,256

usually without specifying any direct connection between gain and receptive field shift. We know from the large257

literature exploring the physiology of attention that receptive field shifts are correlated with spatial attention258

(Anton-Erxleben & Carrasco, 2013; Anton-Erxleben et al., 2007; Anton-Erxleben et al., 2009; Fischer & Whitney,259

2009; Kay et al., 2015; Vo et al., 2017; Womelsdorf et al., 2006) and several authors have proposed computational260

mechanisms to explain how shifts could account for enhanced behavior. For example, receptive field shifts could261

increase the information capacity of a population of neurons by reducing spatial uncertainty about position (Kay262

et al., 2015) or enhancing discriminability (Vo et al., 2017). Although these computational models accurately263

described the visual system they failed to compare different possible model architectures (Gardner & Merriam,264

2021), in particular architectures where gain and shift are linked. By using a model designed to mimic the265

visual system and built from independent data, we believe our analysis is more likely to reveal the true relationship266

between behavioral performance and receptive field properties. For this task, behavior appears to be solely affected267

by spatial signal gain.268

Our analysis is limited by the accuracy of the neural network observer model. There are several reasons to269

suggest that the model captures properties of both object recognition and the primate visual system that are270

relevant to testing mechanisms of attention. We chose to analyze a CNN whose architecture was designed to271

reflect the primate visual system and that was evaluated by comparing the similarity of CNN unit activity against272

measurements of single unit activity in the primate visual cortex (Schrimpf et al., 2018). After training, the image273

features that the CNN units become selective for align closely with those that activate single units in visual cortex274
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(Carter et al., 2019; Yamins et al., 2014). In addition, the designers of the architecture we used (CORnet, Kubilius275

et al. (2018) optimized for “core object recognition”, detecting a dominant object during a viewing duration of276

natural fixation (100-200 ms) in the central visual field (10 deg). We re-used core object recognition in our human277

object detection task and projected our test images in a 10 degree square aperture to obtain similar perceptual278

characteristics. In the analysis of our task we showed that distributed performance was similar for humans and279

the CNN at around 65 ms, confirming that the intended design of CORnet generalized to the new dataset and280

task that we used.281

One of the main differences between convolutional neural networks and the primate visual cortex comes from the282

different ways in which units and neurons project their activation between layers. In our analysis, this was most283

apparent in the scale of the gain necessary to produce human-matched behavioral enhancements during spatial284

attention. In the Gaussian gain CNN the model passes the gain from layer to layer in a linear manner and we285

found that a gain of about 4× was needed to reproduce human behavioral enhancement. For comparison, neural286

recordings in primates have measured an attentional effect on the order of a 20-40% gain (1.2-1.4×) (Luck et al.,287

1997; Treue & Trujillo, 1999). When we added a local selection mechanism implemented by divisive gain control288

to mimic the way that visual cortex selects and amplifies the strongest signals (Kaiser et al., 2016; Pestilli et al.,289

2011) we found that the CNN observer model required a much smaller gain of 1.25×, which when amplified across290

four layers could produce the necessary combination of gain and selection required to reproduce the behavioral291

effect. Such non-linear selection mechanisms are thought to be a critical component of attention (Pestilli et al.,292

2011) and could be achieved by normalization of signals in visual cortex (Carandini & Heeger, 2012). This analysis293

does not imply that gain must be applied early in the visual hierarchy. Although physiological measurements have294

found evidence for this (Luck et al., 1997; McAdams & Maunsell, 1999; Motter, 1993), it is equally possible that295

the gain is applied at a late stage close to decision making and signal gains early in visual cortex are a result of296

backward projections to these areas (Buffalo et al., 2010).297

Our finding that changing the tuning of units has little effect on behavior implies that the preferred features of units298

are a poor proxy for determining their influence on decision making (Lindsay & Miller, 2018). In theory, the visual299

system has the capacity to identify neurons that respond strongly to particular visual features and boost these to300

improve behavioral performance. In practice, Lindsay and Miller (2018) have shown that this is computationally301

inferior to magnifying unit activity according to the gradient on the output. In addition, feature sensitivity appears302

to be weakly correlated with the gradient of a unit on output behavior, with the implication that this is also true in303

the visual system. This leads to what could be a paradox: if you want to attend to complex features, how do you304

design a system to target the particular units with strong gradients on downstream decision-making areas? Our305

results, as well as the finding that attention can sometimes reduce perceptual performance (Yeshurun & Carrasco,306
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1998), suggest that the attention system doesn’t solve this problem directly but instead deploys non-specific gain.307

Instead of over-optimizing the attentional system for every possible visual target, attention seems to operate over308

a more limited set of features. Visual search tasks suggest that this set of features is limited to a few basic309

elements, possibly color, orientation, motion, size, and position (Wolfe & Horowitz, 2004). Because these basic310

feature detectors are combined by the visual system to create complex neurons it is in some sense unsurprising311

that when we measure high-level features, even those as simple as the receptive fields in late layers, these appear312

to be the targets of attentional effects. In fact, these apparent effects of attention may simply be epiphenomena313

as we have demonstrated.314

Our finding conceptually shifts experimental and theoretical work on neural mechanisms of attention. The vast315

literature on receptive field size and location shifts due to attention provide only a suggestion that these effects316

could underlie behavioral enhancement, but do not test that hypothesis explicitly. By using computational mod-317

eling we tested this directly and find strong support for gain as the fundamental mechanism driving behavioral318

enhancement with attention.319

Methods320

Human observers321

Seven observers were subjects for the experiments (1 female, 6 male, mean age 22 y, range 19-24). All observers322

except one (who was an author) were naïve to the intent of the experiments. No observers were excluded during323

the initial training sessions (see eye-tracking below). Observers completed 1600 trials in two 60 minute sessions.324

Observers wore lenses to correct vision to normal if needed. Procedures were approved in advance by the Stanford325

Institutional Review Board on human participants research and all observers gave prior written informed consent326

before participating.327

Hardware setup for human observers328

Visual stimuli were generated using MATLAB (The Mathworks, Inc.) and MGL (Gardner et al., 2018). Stimuli329

were displayed at 60 cm viewing distance on a 22.5 inch VIEWPixx LCD display (resolution of 1900x1200, refresh-330

rate of 120 Hz) and responses collected via keyboard. Experiments were performed in a darkened room where331

extraneous sources of light were minimized.332

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 7, 2022. ; https://doi.org/10.1101/2022.03.04.483026doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.04.483026
http://creativecommons.org/licenses/by-nc-nd/4.0/


Eye-tracking was performed using an infrared video-based eye-tracker at 500 Hz (Eyelink 1000; SR Research).333

Calibration was performed at the start of each session to get a validation accuracy of less than 1 degree average334

offset from expected, using a thirteen-point calibration procedure. During training, trials were initiated by fixating335

the central cross for 0.5 s and canceled on-line when an observer’s eye position moved more than 1.5 degree away336

from the center of the fixation cross for more than 0.3 s. Observers were excluded prior to data collection if337

we were unable to calibrate the eye tracker to an error of less than 1 degree of visual angle or if their canceled338

trial rate did not drop to near zero, all of the observers passed these criteria. During data collection the online339

cancellation was disabled and trials were excluded if observers made a saccade outside of fixation (> 1.5deg)340

during the stimulus period.341

Experimental Design342

We compared the ability of humans and neural networks to detect objects in a grid of four images covering 10343

degrees of visual angle (224 px). Given a grid of images, the observers were asked to identify whether or not344

a particular target category was present. On half of the trials we gave observers prior information telling them345

which of the four grid locations could contain the object (100% valid cue). This focal condition was compared346

with a distributed condition, in which no information was provided about which grid location could contain the347

target object. For humans, the prior in the focal condition was a spatial cue, a visual pointer to one corner of the348

grid. For the neural network model, the prior for the focal condition was implemented by a mechanistic change349

in the model architecture, which differed according to the model of attention being tested.350

Stimuli351

The stimuli presented to both humans and the neural network observer model were composed of four base images352

arranged in a grid (henceforth a "composite grid"). Each base image contained an exemplar of one of 21 ImageNet353

(Deng et al., 2009) categories. Composite grids always contained images from four different categories. The base354

images were cropped to be square, and resized to 122 × 122 pixels, making each composite grid 224 × 224355

pixels. We pulled 929 images from each of 21 ImageNet categories: analog clock (renamed to "clock"), artichoke,356

bakery (renamed to "baked goods"), banana, bathtub, bonsai tree (renamed to "tree"), cabbage butterfly, coffee,357

computer, Ferris wheel, football helmet, garden spider (renamed to "spider"), greenhouse, home theater, long-358

horned beetle (renamed to "beetle"), mortar, padlock, paintbrush, seashore, stone wall, and toaster. These base359

images were usually representative of their category. However, many included other distracting elements (people,360
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text, strong reflections, etc). Two authors (KF and DB) selected 100 base images for each category absent of361

distracting elements (low-distraction base images) to be used for the human task. From these low-distraction362

base images we set aside 5 to use as exemplars when introducing the category to human participants.363

To create the human stimulus set we generated composite grids for each of the 20 target categories. Each category364

required 80 composite grids: 40 including target objects and 40 without. We therefore needed 40 base images365

from the target category and 280 (3× 40 + 4× 40) base images from the non-target categories. We sampled all366

images from the low-distraction base images. Targets were placed 10 times in each of the four corners.367

The neural network observer model was trained and tested on an expanded stimulus set. We set aside 50 base368

images for each category to train the linear classifiers (see Linear Classifiers, below). The approach was otherwise369

identical to that described above, but 829 composite grids were created with a target and 829 without. Because370

CNN models are translation invariant we formed all target composites with the target base image in the NW371

corner, to simplify analysis.372

Human task373

Human observers performed blocks of trials in which they had to report the presence or absence of a specified374

category in composite grids. At the start of each block we showed the human observers the words "Search for:"375

followed by the name of the current target category (Fig. 1a, Category). They were then shown five held-out376

(i.e. not shown in the task) exemplar base images to gain familiarity with the target category (Fig. 1a, Examples)377

and advanced through these with a self-paced button click. This was followed by individual trials of the task.378

At all times a fixation cross (0.5 deg diameter, white) was visible at the center of the screen in front of a black379

circle (1 deg diameter). This fixation region obscured the center of the composite grid, but made maintaining380

fixation easier for observers. At the start of each trial the pixels of the current composite grid were scrambled to381

create a luminance-matched visual mask. This was displayed until an observer maintained fixation for 0.3 s (Fig.382

1a, "Fixation"). Once fixation was acquired a cue was shown for 0.75 s, informing the observer about whether383

the trial was focal (in which case the possible target location was indicated) or distributed (four possible target384

locations indicated). The focal cue was a 0.25 deg length white line pointing toward the cued corner of the grid.385

The distributed cue was four 0.25 deg length white lines pointing toward all four corners of the grid. Distributed386

and focal cues were presented in pseudo-randomized order throughout each block. The cue was followed by a387

0.75 s inter-stimulus interval (Fig. 1a, Delay) before the composite grid (10 × 10 deg) was shown for either 1388

(0.008 s), 2 (0.017), 4 (0.033), 8 (0.067), 16 (0.133), or 32 (0.267) video frames (Fig. 1a, Stimulus). The mask389
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then replaced the stimulus and observers were given 2 s to make a response (Fig. 1a, Response), pressing the390

“1” key for target present or the “2” key for absent. Feedback was given by changing the fixation cross color to391

green for correct and red for incorrect until the 2 s period elapsed. A 0.25 s inter-trial interval separated trials.392

Observers completed one training block (the “tree” category) as practice before data collection began. They then393

completed each category block (40 focal trials with 20 target present and 20 target absent, and 40 distributed394

trials with 20 target present and 20 target absent) before moving on to the next category. Block order was395

pseudo-randomized for each observer. Each block took about five minutes to complete and a break was provided396

between blocks, as needed. In total the experiment took about two hours, split into two one hour sessions on397

different days.398

Neural network observer model399

We modeled the ventral visual pathway using CORnet-Z, a convolutional neural network (CNN) proposed by400

Kubilius et al. (2018). The model consists of four convolutional layers producing feature maps of decreasing401

spatial resolution (Table 1). The model which we used was trained on ImageNet, details can be found in Kubilius402

et al. (2018). At the last convolutional layer we took the average over the spatial dimensions of each feature map403

to create the neural network’s representation (512-dimensional vector) of the input image.404

Layer Type Kernel Size Output Shape FWHM (px, deg)
Input 224× 224× 3

V1 Block conv, stride=2 7×7 112 × 112 × 64 11 (0.5)
max pool 2×2 56 × 56 × 64
ReLU 56 × 56 × 64

V2 Block conv 3×3 56 × 56 × 128 26.8 (1.21)
max pool 2×2 28 × 28 × 128
ReLU 28 × 28 × 128

V4 Block conv 3×3 28 × 28 × 256 55.6 (2.52)
max pool 2×2 14 × 14 × 256
ReLU 14 × 14 × 256

IT Block conv 3×3 14 × 14 × 512 111.4 (5.06)
max pool 2×2 7 × 7 × 512
ReLU 7 × 7 × 512

Encodings avg. pool 1 × 1 × 512

Table 1: CORnet-Z structure. Average receptive field (RF) full-width at half-maximum (FWHM) is measured
using ellipses fit to the backpropagated gradients of units in a convolutional layer with respect to the input image
pixels. 22.4 pixels corresponds to one degree of visual angle (Kubilius et al., 2018).
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Linear classifiers405

To allow the neural network observer model to perform an object detection task we trained a set of linear classifiers406

on the model output to predict the presence or absence of each of the twenty target categories. Each of these407

fully-connected layers received as input the (512-dimensional) feature output from the CNN and projected these408

to a scalar output. Weights were fit using logistic regression, using scikit-learn and the LIBLINEAR package409

(Pedregosa et al., 2011). We trained the classifiers on a held out set of base images not used to generate the410

task grids, using 50 images with the target present and 50 images with the target absent.411

To test model performance in the detection task the observer model was presented with each of the composite412

grids in the full image set. We report the model’s area under the curve (AUC) as a measure of performance.413

Spatial attention: Gaussian gain model414

To introduce Gaussian gain as a mechanism for spatial attention we multiplied the pixel intensity of the input415

image at row r and column c by the magnitude of a 2-dimensional Gaussian, using the following equation:416

gr0,c0,σ,β(r, c) = (β − 1) exp
(
− (r − r0)2 + (c− c0)2

2σ2

)
+ 1 (2)

Where r0 and c0 set the row and column location for the center of the gain field and β controls the strength,417

i.e. the multiplicative factor at the peak of the Gaussian. The Gaussian was centered in the cued quadrant and418

σ was set to 56 pixels (approx 2.5 degrees). We explored four values of β: 1.1, 2, 4, and 11.419

Quantifying the effects of gain on receptive fields and activations420

To reduce computational requirements we randomly sampled 300 units per layer (1,200 total units) for receptive421

field analysis, with higher density near the attended locus.422

To determine the location and size of the receptive field of each CNN unit we computed the derivative of their423

activation with respect to the pixels in the input image. This derivative was taken across a batch of 40 task424

images evenly distributed across categories. The magnitude of derivatives with respect to the red green and blue425

channels were summed to create a sensitivity map. Receptive field location and size were estimated by fitting a426

2D Gaussian distribution to the sensitivity map. The Gaussian fit was performed by treating the sensitivity map427
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as an unnormalized probability distribution and choosing the Gaussian with the same the mean and covariance428

matrix as that distribution. Receptive field location was measured as the mean of the Gaussian fit. We report the429

full-width at half-maximum for the receptive field size.430

To measure the effect of gain on the activation of CNN units we computed the effective gain and feature correlation431

across the sampled units. We defined effective gain as the ratio between the standard deviation of a unit’s activity432

after applying an attention mechanism compared to before. We also measured the feature correlation at each433

spatial location by taking the Pearson correlation of the sampled unit activation with and without an attentional434

mechanism applied. We computed the effective gain and correlation measures across all features and all stimuli.435

Nonlinear normalization436

In order to test the ability of “winner-take-all” normalization to amplify small gains, we isolated the first layer

of the CNN, and applied nonlinear normalization with exponent ξ. More precisely, if the output feature map of

the first layer had size M rows by N columns by C channels and activations aijc, we calculated the normalized

outputs

bijc =
∑M,N,C
k,l,d=1 |akld|∑M,N,C
k,l,d=1 |akld|ξ

aξijc.

To measure the resulting amplified gain we applied a small Gaussian gain between 1× and 1.25× to the input437

image in the same manner as in the full Gaussian gain model. We then measured the ratio of average effective438

gain for units contained entirely within the gain field against the average effective gain of units entirely outside439

the attention gain field.440

Spatial attention: Shift-only model441

In the Gaussian gain model we applied the gain at layer 1 and observed changes in the model’s detection perfor-442

mance at the output layers. We took a parallel approach here to design a model that could mimic the receptive443

field shifts at layer 4 (induced by gain at layer 1) while producing no systematic effect on response gain. To cause444

the layer 4 units to observe different parts of the input image we shifted the connections between pixels in the445

input image and first layer. We preserved all other connections, so layer 4 units of the neural network continued446

to receive information from the same layer 1 units.447

To obtain the size of connection shifts we created a “shift map” in input image space by measuring the distance448

and direction that layer 4 units moved when the Gaussian gain was applied. To make this measurement, we took449
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each input image pixel location (r, c) and calculated the average receptive field shift of the 20 sampled layer 4450

units with the closest receptive field centers without attention. Because we used a sampling procedure and not451

the full set of layer 4 units we weighted the sampled units by their Euclidean distance from the target pixel.452

To reduce noise in the shift map we applied a Gaussian blur with σ = 8 pixels. Using the shift map, we then453

re-assigned the connections from the input image to the layer 1 units so that these would reproduce the shifts454

observed in layer 4. The simplest way to to implement this involved swapping the activation of each layer 1 unit455

with the activation of the unit at its shifted location. For example, if unit (75, 75) was shifted by (−10,−10) we456

assigned it the activation of the unit at (65, 65). To deal with decimal shifts we performed linear interpolation457

using neighboring units.458

Spatial attention: Sensitivity shift by local gain459

In the sensitivity shift model we aimed to mimic the spatial tuning changes induced by the Gaussian gain at a460

particular layer but without changing the effective gain of units. To do to this, we first computed the true gain461

propagated to the target layer L by scaling the Gaussian gain map to the size of layer L− 1’s feature map. With462

this change alone the weights of units closer to the locus of attention are scaled more than the weights farther463

from the locus, introducing differential gain. To avoid a change in the overall scale of units’ weights, we re-scaled464

the kernel to match the L2-norm (sum-of-squares) of the original kernel weights.465

To summarize, suppose that layer L − 1’s feature map is t times the size of the input image so that a unit at466

row r and column c of the layer L− 1 feature map has an effective effective gain of gtr0,tc0,tσ,β(tr, tc) under the467

Gaussian gain model. Then if w ∈ RN is the original weight vector of a unit in the unraveled convolution at layer468

L whose input vector a ∈ RN contains the activations of post-ReLU units of layer L− 1, and if the row-column469

positions in the L − 1 feature map of the unit described by ai is (ri, ci), then the replacement weight vector in470

the sensitivity shift model is given by the vector w′ ∈ RN , whose entries are:471

w′
i =

( ∑N
i=1 w

2
i∑N

i=1 w
2
i gtr0,tc0,tσ,β(tri, tci)2

)1/2

wi,

Spatial attention: Gain-only model472

We designed a model which could effect gain without receptive field shift by flattening the gain in the cued473

quadrant. Receptive field shifts occur because there is a differential gain across the receptive field of a unit. To474
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get rid of this, you can simply put a flat gain across the cued quadrant. This naive approach has the problem475

that units that overlap two quadrants will still shift and shrink according to the strength of the gain. To prevent476

these units from shifting in a manner correlated to the gain we separated the CNN feature maps into four parts477

corresponding to the four image quadrants, ran the model forward with zero padding around each quadrant, and478

then concatenated the results back together. This ensured that each unit experienced a flat gain across its inputs479

and that as gain increased units near the quadrant boundaries did not experience gain-dependent receptive field480

shift or shrinkage.481

Necessary and sufficient test482

To obtain a propagated gain map in the final layer output we applied the Gaussian gain to the start of the483

neural network observer model and measured the average effective gain of the 7 × 7 layer 4 output units across484

a representative sample of images. We call this the “propagated gain map”, since it represents the effect of the485

input gain on the output layers. We tested necessity by dividing the network output by the map for a model with486

gain applied and we tested sufficiency by multiplying the outputs from a no-gain model.487

Behavioral analysis488

We analyzed the human behavioral data by binning trials according to their duration and computing sensitivity d′
489

from the equation:490

d′ = Z(H)− Z(FA) (3)

Where Z is the inverse of the cumulative normal distribution and H and FA are the hit and false alarm rate,491

respectively. We fit a logarithmic function to the d′ data using the equation:492

d′(t) = α ∗ log(κt+ 1) (4)

Where t is the stimulus duration and α and κ are parameters that control the shape of the logarithmic function.493

To compare human and model performance we can also convert between d′ and the area under the curve (AUC)494

by the equation:495
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d′ =
√

2Z(AUC) (5)

Confidence intervals496

All error bars are calculated by bootstrapping the given statistic with n = 1000 and reported as the 95% confidence497

interval.498

Data and code availability499

The images and composite grids used in this study as well as the code necessary to replicate our analyses are500

available in the Open Science Framework with the identifier 10.17605/OSF.IO/AGHQK.501
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