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Abstract

To sample the important parts of the visual world observers make saccades, moving the high-

resolution and color-sensitive fovea to informative locations. Choosing to make a saccade requires

sampling the periphery and identifying potentially important parts of the visual scene. This covert

attention, without eye movement, is essential to selecting information in an efficient manner. At

an intuitive level covert attention is a focusing on a feature or a location in the visual world and

a suppression of other irrelevant features and locations. When operationalized into the laboratory,

cueing an observer with covert attention can be shown to result in improved detection, smaller

thresholds of discrimination, faster reaction times, and suppression of distractors. These changes

are known to be in part the result of small tweaks to the representation of visual stimuli in sensory

cortex, but are also the result of context-dependent selection occurring after sensory processing has

gone to completion. How attention implements this balance of sensory change and selection is a

central problem for the neuroscience of vision.
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Chapter 1

Introduction

1.1 Overview

In this thesis, I investigate the processes underlying selective visual attention in human cortex. The

overarching goal is to establish how information is selected from visual representations for use during

adaptable behavior. To do this, I start by extending an existing linking model of contrast, which

controls the visibility of images, to a second feature: coherence. These two ways of manipulating

the visibility of motion require a new framework to be built, demonstrating how visual cortex is

sensitive to each of these features and whether they interact. I then connect this framework to

perception. This connection uses a computational linking model and allows me to test different

hypotheses about how perception depends on sensory representations. I show with these models

that the scale of sensory changes due to attention are insufficient to capture perception, implicating

a downstream readout process as a key component of selective visual attention. I expect these results

to hold true for other forms of selection, e.g. by spatial location, color, or motion direction, and

move toward demonstrating this in the final section of the thesis.

1.1.1 Aim 1: A flexible readout mechanism of human sensory represen-

tations

The prevailing view is that attention is implemented by modifications of sensory representations.

Without a computational linking model it is impossible to know whether these sensory changes are

the only changes occurring during selective visual attention.

In Chapter 2, I build a quantitative framework for features which control the visi-

bility of motion. Contrast, motion coherence, and duration all control the visibility of motion and

their representations in human visual cortex are similar. This makes them excellent tools to study

whether sensory change alone can account for the behavioral effects of attention. In this chapter, I

1



CHAPTER 1. INTRODUCTION 2

measure and quantify how these features are represented in human cortex and lay the ground work

for constructing a linking model.

In Chapter 3, I use a linking model to show that sensory change is insufficient to

account for all the behavioral effects of attention. I first validate that a computational linking

model of motion visibility can be constructed, based on the quantitative framework in Chapter 2.

Then, using the validated linking model I show that the sensory change occurring during selective

visual attention is insufficient to account for behavioral changes – flexible readout must be a necessary

component.

1.1.2 Aim 2: Comparing different forms of sensory selection on a shared

perceptual metric

One question we asked ourselves after completing Aim 1 was whether our results would be consistent

in other features. Is selection by contrast and coherence similar to selection by spatial location, color,

or motion direction? Although we know that different visual features are processed in different ways,

this does not necessarily mean that selection by these features requires different computational

resources and implementations.

In Chapter 4, I address this aim by building a psychophysical task with which the

strength of spatial and feature-based attention can be compared on a common metric.

I demonstrate in these experiments that the sensitivity (i.e. the variability in response error) is

similar for different forms of selection. This suggests that selection by color, motion direction, and

location may all be implemented by similar mechanisms.



CHAPTER 1. INTRODUCTION 3

Before going into detail about my experiments and computational models, I will review what is

known about selective visual attention. In particular, I will focus on the history of how selection

might be implemented as a computation in the human brain. I will also cover existing uses of

computational linking models.

1.2 Selective attention

We all know, more or less intuitively, what it is like to attend to something that we see. When

stopped at an intersection, a driver might be motivated by their context to focus on the direction

of nearby cars, the movement of pedestrians, and the stop signs or traffic lights in their vicinity

(Fig. 1.1a). The ease with which we can deploy attention hides a complex set of changes which

occur inside the brain and which change our sensory perceptions. By moving such experiences

into the laboratory we can operationalize them (Fig. 1.1b). That is to say, we can break down a

complex process such as attention into discrete measurable quantities and control them using the

parameters of a task. For example, attention might improve reaction times, detection, or the ability

to discriminate between stimuli, but not necessarily all of these and not necessarily all to an equal

extent. Once operationalized, we can begin to track the results of attention back to its roots inside

the brain.

1.2.1 A brief history of selective attention research

Early attention research was based on introspective observations of the experimenter’s conscious

experience. One of these early observations was that percepts become more “intense” or “clear”

when focused upon (Helmholtz, 1924; James, 1981; Kuelpe, 1902; Titchener, 1908). Although

intuiting changes in perceptions comes with many problems (Helmholtz, 1924), these observations

were not without merit. Spatial attention toward visual stimuli does lead to a perceptual change

(Carrasco & Barbot, 2018). When carefully measured, it can be shown that these enhancements in

perception trade off with a loss of information about unattended stimuli. An early example of this

is a set of experiments in which observers were asked to echo speech from one ear at a time (Cherry,

1953). Observers can do this, but they often recall little to no information about the ear they are

asked to ignore. Some low-level details leak through such as the pitch of the speakers voice (Cherry,

1953). Together what these early findings revealed is that there is a common notion of attention and

it leads to a profound change in our conscious experience. A vast literature has since been devoted

to understanding how these changes occur as a function of neural activity in the brain.

One of the steps necessary to go from intuition to an implementation-level understanding was

to shift research toward objective measurement. The transition from introspection to objective

measurement can be highlighted in the way that the experiment mentioned above was introduced,

quoting from Cherry (1953): “the ‘subject’ under test (the listener) is regarded as a transducer
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a

b

Figure 1.1: Natural and operationalized tasks which engage selective visual attention. (a) A driver,
stopped at an intersection, puts more contextual weight on information such as the direction of
nearby cars, the movement of pedestrians, and stop signs or traffic lights in their vicinity. While
those features of the visual environment might be enhanced, irrelevant information, like the colors
of the sky or houses, might be filtered out of their perceptual experience. (b) To operationalize
selective visual attention we simplify complex tasks like that presented in (a), to forms where the
stimulus can be precisely manipulated. In this example task, attention could be used to select two
of the four dot patches and report their direction of motion. Tasks like this allow us to compare
different forms of attention: for example, selecting the two dot patches by color (blue or orange) or
selecting the two dot patches according to their location (left or right).

whose responses are observed when various stimuli are applied, whereas his subjective impressions

are taken to be of minor importance”. This approach of seeing an observer as a kind of computational

processor has been effective. The study made an abrupt move toward understanding sensory systems

as processing units and differentiating between the computations a system might employ versus the

implementation of those computations (Marr & Vision, 1982). The rough framework for how sensory

processing occurs and how attention might interface with this is as follows: any given stimulus might
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be processed in a serial or parallel manner and processing might go to ‘completion’ or be halted at a

certain point, based on an observer’s attentional state. Measuring the knowledge of an observer about

an attended or ignored stimulus therefore assesses the extent of processing which has occurred as well

as the extent of conscious access to that processed representation. For example, for the echoing task

described earlier, an observer might be asked whether they had retained knowledge about an un-

echoed (and therefore, presumably unattended) voice. If they could recall simple low-level features

of the unattended voice, for example that the speaker’s voice was higher-pitched, then a researcher

could conclude that parallel processing of both streams had occurred up to pitch processing (Cherry,

1953). From the same data a second conclusion can also be reached: processing of the ignored

stimulus must have been halted before the point of complete semantic understanding. These kinds

of results about auditory attention coincide neatly with early findings about the human visual cortex.

Early stages of visual processing are thought to occur in a parallel manner, in which simple sensory

detectors are repeated across retinotopic space (Kuffler, 1953; Hubel & Wiesel, 1962, 1968). These

ideas led researchers to begin to distinguish between stages of processing: an early parallel stage in

which incoming sensory information is processed without immediate limits in capacity, and a second

limited capacity serial stage from which complex decisions are made.

Based on the ideas above, early theories of attention focused on when attentional selection might

occur relative to the parallel and serial stages of processing. As described above, some features of

auditory stimuli (and other senses) are available for decision making regardless of the observers focus.

Based on this, researchers suggested a bottleneck during processing and proposed that this was the

mechanistic implementation of selective attention. An early example of this was Broadbents Filter

theory (Broadbent, 1958) which includes an early bottleneck. In Filter theory, visual information

is processed in parallel until low-level features (location, intensity, frequency) are resolved. At this

point, parallel processing gives way to a serial complete processing of object identity, form, etc. An

alternative theory, late selection, suggests that processing occurs up to semantics in an unconscious

parallel manner (Deutsch & Deutsch, 1963). An example best illustrates the distinctions between

each theory. Again, if an observer is echoing one speaker while ignoring a second, a late selection

account predicts that a substantial amount of information is nevertheless available about the ignored

voice. This is because late selection predicts that semantic-level processing of speech will occur

regardless of sensory selection, leaving high-level information available to an observer. Evidence

for this comes from experiments in which observers orient to highly salient but also very high-level

features such as their own name, even when focused on other tasks (Moray, 1959). These two

theories have since been reconciled by suggesting that not all features are processed in identical

ways and that selection is graded (Treisman, 1960) or has variable capacity limits at different stages

(Kahneman, 1973).

This thesis is primarily focused on visual attention, but the results are likely to be broadly

applicable to sensory selection. Selective attention has been most heavily studied in the visual



CHAPTER 1. INTRODUCTION 6

domain, in part because of the close relationship between selecting information in the world and

orienting of the eyes. There are two ways to orient visual attention. An observer can make an overt

movement of the eyes or they can covertly attend, without moving the eyes. Like all forms of selective

attention, covert attention can accelerate responses (Eriksen & Hoffman, 1972; Posner, Snyder, &

Davidson, 1980), improve detection performance, and increase discrimination sensitivity (Carrasco,

2011). Cues about important locations can both be imposed externally on an observer (Posner,

1980) or the result of internal guiding of attention toward a cued location. For the remainder of this

introduction I will focus on covert visual attention and how researchers have suggested it might be

implemented in human visual cortex.

1.3 Organization of the human (and primate) visual cortex

The selection of visual information is primarily thought to occur in cortex and not in the retina

or in thalamic relay areas. Briefly, visual perception begins when light reaches the cones and rods

in the retina. These photoreceptors transduce photons into electrical signals while maintaining

spatial precision and implicitly coding information about wavelength. Substantial processing occurs

in parallel within the retina by the many different retinal ganglion cells and related interneurons

(Field & Chichilnisky, 2007). These cells then project their outputs to the lateral geniculate nucleus

(LGN), a relay area within the thalamus. Again, considerable processing is known to occur within the

LGN, and already in this second visual processing area modulation by attention has been measured

(O’Connor, Fukui, Pinsk, & Kastner, 2002). It is in the LGN that visual information becomes

contra-lateralized, i.e. the inputs from the two visual fields in each retina are separated and sent to

the opposite hemispheres. The LGN sends its outputs to multiple areas, but primarily into striate

cortex area V1. Area V1 contains a full retinotopic map of the contralateral visual field and neurons

in this area are sensitive to low-level features: contrast, spatial orientation and frequency, and color,

among other simple visual features.

Area V1 sends its projections on to a multitude of retinotopic areas (V2, V3, etc) which together

are referred to as “early visual cortex”. These areas have progressively larger receptive fields (Du-

moulin & Wandell, 2008) and are sensitive to more complex features. Eventually, visual processing

differentiates into at least two streams (Mishkin, Ungerleider, & Macko, 1983) which encode primar-

ily for object identity or temporal information like motion. The ventral stream (hV4 and regions

in ventral temporal cortex) is thought to encode information about the form (Desimone & Schein,

1987), color, and texture of objects (Okazawa, Tajima, & Komatsu, 2015). The dorsal stream (MT

and posterior parietal cortex) is thought to encode information about spatial processing, depth, and

motion (Britten, Shadlen, Newsome, & Movshon, 1993). These broad definitions are based on lesion

studies which showed a double dissociation where ventral temporal cortex lesions lead to deficits in

pattern and object recognition but not grasping behaviors, and vice versa. All modern models of
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these processing streams acknowledge that they are far from distinct and are deeply interconnected.

In this thesis, I focus in particular on human cortical areas that are important for the processing

of low-level visual features, such as contrast (area V1, orange shading Fig. 1.2) and motion coherence

(area hMT+, purple shading Fig. 1.2). I will demonstrate that these areas are parametrically related

to each of these properties, respectively, and that their responses are scaled in a manner which reflects

human perception to each feature. Other areas that are likely also involved in representing these

features include V2, V3, V3A and V3B, hV4, and V7 – all retinotopic areas in early visual cortex

(Wandell, Dumoulin, & Brewer, 2007). In Aim 2, I focus on features such as color and motion,

which also implicate similar parts of human visual cortex.

Cortical areas V1 and MT

Figure 1.2: Human cortical areas implicated in the representation and perception of motion visibility.
Two brain areas in the human visual cortex: V1 and MT, are shown highlighted on a reconstructed
cortical surface. These two regions are critical areas in the processing of motion visibility.

1.4 Implementations of selective visual attention

Selective attention is a balancing act for the brain, which must weigh the possibility of needing unat-

tended information against the strength of sensory selection. In early selection theories information

is being thrown out before complete processing – which could be potentially disadvantageous if a

stimulus later becomes important for behavior (Mack & Rock, 1998). Any modification of sensory

representations to enhance one visual feature will have a cost for others. Attention research has

always been aware of this and in a few particularly dramatic demonstrations (Haines, 1991; Mack &

Rock, 1998; Neisser, 1979; Simons & Chabris, 1999) observers can be shown to entirely lose access

to otherwise highly salient information. These effects of selection require observers to be performing

a task with significant cognitive load (Lavie, 2005; Lavie, Hirst, de Fockert, & Viding, 2004; Rees,

Frith, & Lavie, 1997). What this demonstrates is that the implementation of selective visual atten-

tion involves the gating of information transfer between cortical areas, where some information is

passed on for additional processing while other information is not.

Modern neuroscience now deploys a multitude of neural recording techniques to understand how
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sensory selection might be implemented by the brain. Both at a coarse scale in humans and at the

level of individual neurons in primates and, very recently, rodents. In humans and non-human pri-

mates attention has been shown to alter the response gain of neurons in the visual system, including

in the LGN (O’Connor et al., 2002), in V1 (Motter, 1993), V2 (Buffalo, Fries, Landman, Liang, &

Desimone, 2010; Luck, Chelazzi, Hillyard, & Desimone, 1997; Motter, 1993), V3 (Liu, Larsson, &

Carrasco, 2007b; Pestilli, Carrasco, Heeger, & Gardner, 2011; Saenz, Buracas, & Boynton, 2002;

Silver, Ress, & Heeger, 2007), V4 (Buffalo et al., 2010; Connor, Gallant, Preddie, & Van Essen, 1996;

Luck et al., 1997; McAdams & Maunsell, 1999; Moran & Desimone, 1985; Motter, 1993; Reynolds,

Pasternak, & Desimone, 2000; Spitzer, Desimone, & Moran, 1988), V3A (Serences & Boynton, 2007),

MT (Beauchamp, Cox, & DeYoe, 1997; O’Craven, Rosen, Kwong, Treisman, & Savoy, 1997; Saenz

et al., 2002; Seidemann, Poirson, Wandell, & Newsome, 1999; Serences & Boynton, 2007; Treue &

Mart́ınez Trujillo, 1999; Treue & Maunsell, 1996) and MST (O’Craven et al., 1997; Treue & Maun-

sell, 1996), and in IT cortex (Chelazzi, Duncan, Miller, & Desimone, 1998; Moran & Desimone,

1985). Using BOLD imaging these changes can be observed simultaneously throughout almost all

of early visual cortex (Liu et al., 2007b; Pestilli et al., 2011; Saenz et al., 2002; Silver et al., 2007),

ventral temporal cortex (Baldauf & Desimone, 2014), and in some tasks throughout association

areas as well (Çukur, Nishimoto, Huth, & Gallant, 2013). Changes to sensory representations occur

for spatial attention tasks (Klein, Harvey, & Dumoulin, 2014; McAdams & Maunsell, 1999; Mitchell,

Sundberg, & Reynolds, 2009; Pestilli et al., 2011; Womelsdorf, Anton-Erxleben, Pieper, & Treue,

2006) and are thought to be linked to preparatory signals (Tolias et al., 2001; Moore, Armstrong,

& Fallah, 2003; Moore & Fallah, 2001) originating in the frontal eye fields prior to saccades (Moore

& Armstrong, 2003). Many of the examples above involved tasks in which spatial attention was

not deployed, but instead observers shift feature-based attention (Baldauf & Desimone, 2014; Harel,

Kravitz, & Baker, 2014; Huk & Heeger, 2000; Jehee, Brady, & Tong, 2011; Saenz et al., 2002; Sàenz,

Buraĉas, & Boynton, 2003; Serences & Boynton, 2007; Treue & Mart́ınez Trujillo, 1999; Çukur et al.,

2013).

Several general hypotheses describe how sensory representations might be modified during se-

lective visual attention (Fig. 1.3). One early hypothesis was that neurons sensitive to an attended

feature might become more sensitive during a selection behavior (Reynolds et al., 2000; Serences &

Boynton, 2007; Snyder, Yu, & Smith, 2018; Treue & Mart́ınez Trujillo, 1999) (Fig. 1.3a). Such a

change is often modeled as a multiplicative gain, i.e. where R′(s) = αR(s), with α being a parameter

fit to measurements of neural activity. Another possibility is that neurons increase their baseline

response (Buracas & Boynton, 2007; Chen & Seidemann, 2012; Fang, Boyaci, Kersten, & Murray,

2008; Kastner, Pinsk, De Weerd, Desimone, & Ungerleider, 1999; Li, Lu, Tjan, Dosher, & Chu,

2008) (Fig. 1.3b). Baseline shifts are modeled as an additive offset, i.e. R′(s) = R(s) + β. A shift

in baseline response for some neurons, but not others, could be used by downstream mechanisms to

select out the attended stimulus (Pestilli et al., 2011; Hara & Gardner, 2014). A third possibility is
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Figure 1.3: Implementations of attention in sensory representations. (a) Multiplicative gain of the
sensitivity of neurons during attention to a preferred feature. (b) An additive shift in the neural
response, which could be used by a downstream mechanism to differentiate attended and unattended
features. (c) A shift in the preferred feature of a neuron to a different feature.

that neurons change sensitivity, so that more, or different, neurons in the population begin to code

for the relevant stimulus feature (Çukur et al., 2013; David, Hayden, Mazer, & Gallant, 2008; Kast-

ner, De Weerd, Desimone, & Ungerleider, 1998; Klein et al., 2014; Spitzer et al., 1988; Womelsdorf

et al., 2006; Womelsdorf, Anton-Erxleben, & Treue, 2008) (Fig. 1.3c). A shift can be represented

as R′(s) = R(s− γ), where again γ is a free parameter to be fit according to the data. Finally, the

population of neurons might not change their response characteristics, but instead top-down sig-

nals might modify the structure of stimulus-driven and noise correlations between neurons (Cohen

& Maunsell, 2009; Mitchell et al., 2009; Ruff & Cohen, 2016; Verhoef & Maunsell, 2017). These
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changes in the population code are hypothesized to make it easier to linearly decode the relevant

stimulus-driven signals from internal noise (Snyder et al., 2018; Ecker, Denfield, Bethge, & Tolias,

2016; Rabinowitz, Goris, Cohen, & Simoncelli, 2015). Many of these changes may reflect a single

implementation (Reynolds & Heeger, 2009) with apparent differences being the result of the exact

combination of a particular task and stimulus.

Our understanding of the neural implementation has advanced dramatically thanks to recordings

of neuronal populations from animal models. But animal models have also held back research in

important ways. Animals and humans must learn selective visual attention tasks in dramatically

different ways (Birman & Gardner, 2015) which makes it difficult to compare results between species.

In general it is also not possible to probe an animals memory about unattended stimuli. Because of

these differences it is often complex to synthesize the results of research in different model systems.

Recently, mice have been shown to be able to exhibit selective attention (McBride, Lee, & Callaway,

2019; Wang & Krauzlis, 2018; Nakajima, Schmitt, & Halassa, 2019). This is promising for under-

standing the role of different brain areas in attentional behaviors, but also concerning. The mice in

these studies exhibit a bias which resembles selective attention, but they also have high lapse rates

compared to human observers. This may be because mice continue to explore the experiment space

(Pisupati, Chartarifsky-Lynn, Khanal, & Churchland, 2019) whereas humans who learn from rules

do not. Correctly taking these differences into account, perhaps by linking animal research directly

to parallel human research, has a good chance of overcoming these issues.

1.4.1 Which features can survive inattention?

Although attending to a stimulus often results in changes in sensory representation, there are a

few instances in which visual information seems to be processed no matter what. In vision, scene

gist can survive inattention, perceptually (Li, VanRullen, Koch, & Perona, 2002) and as decodable

information from measurements of BOLD signal in visual cortex (Peelen, Fei-Fei, & Kastner, 2009).

This is also true in audition, where highly salient features like names may pop out for subjects

despite a demanding task (Moray, 1959).

One of the easiest operationalized tasks in which to observe that different features are affected

by attention in different ways is during search (Wolfe, 1994). In a search task, an observer will be

cued in advance about the properties of an item and must find its location or detect its presence.

The item will be hidden among a set of distractors whose properties determine the difficulty of the

task. When the target stimulus differs from the distractors along certain key dimensions the task is

trivial. Trivial, in this case, means that the processing required to solve the task occurs in parallel

and the incongruent target will “pop out” of the array. The features which pop out happen to

coincide with the visual properties that are encoded by neurons in the earliest visual areas (Barlow,

Fitzhugh, & Kuffler, 1957; Hubel & Wiesel, 1962, 1959). The parallel processing of detectors that

are topographically mapped across visual space allows this behavior. Differences in the strength
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of signals across these maps, for each feature, can then result in pop out of the relevant stimulus

(Nothdurft, 1993; Treisman, 1985). Difficult search tasks involve conjunctions of stimulus properties

(Egeth, Virzi, & Garbart, 1984) and appear to require attention be directed in a serial manner to

each item (Treisman & Gelade, 1980).

The physiology of early visual cortex, in particular the repetitive small receptive fields in early

visual cortex, suggest one explanation for why some features are processed regardless of attentional

state. Behavioral relevance and past experience may explain why scene gist (Li et al., 2002; Peelen

et al., 2009) and names (Moray, 1959) are also processed in the absence of attention.

1.5 Computational linking models

Measurements of the neural effects of selective attention are not sufficient to understand its im-

plementation, they must be linked correctly to behavior. To reconcile changes in cortical activity

with behavior cognitive neuroscientists link these with computational linking models (Barlow, 1972;

Brindley, 1960; Cohen & Maunsell, 2010; Newsome, Britten, & Movshon, 1989; Pestilli et al., 2011;

Cook & Maunsell, 2002). One assumption underlying much of cognitive neuroscience is that when

we make a measurement of cortical activity, we are seeing the same signals that the brain is using

to solve sensory decision making. This is only an assumption; it is possible that sensory decision

making (and other forms of neural processing) are based on subsets of signals, or population codes,

which remain harder to measure. To avoid making errors in inference it is important to make our

hypotheses (and assumptions) about possible implementations explicit in a form which can be tested.

Here I propose to do this by build computational models which lay out the steps from sensory signal

to sensory decision. We refer to these as “linking models”, as they link together perceptual and

cortical measurements. Linking models are valuable because they force researchers to be explicit

about the scale of behavioral and neural effects and to ensure that these match. It is not suffi-

cient to find a change in a neural representation during attention: it must match the size of the

corresponding behavioral change. In this last section, I will briefly summarize a few examples of

linking models which have shown promise in connecting selective attention behaviors to their neural

implementations.

When primates exert covert spatial attention at a location neurons with receptive fields near

that retinotopic location show a shift in their tuning (Klein et al., 2014; Womelsdorf et al., 2008;

Womelsdorf et al., 2006; Connor et al., 1996). This is likely related to how the brain implements

changes in spatial selectivity prior to and during saccades (Tolias et al., 2001; Moore & Fallah, 2001;

Moore et al., 2003). Other changes in sensory representation also occur, e.g. in the correlations be-

tween neural firing across populations in visual cortex (Cohen & Maunsell, 2009). Meanwhile, covert

spatial attention improves task performance. Recent work has begun to connect these measurements

with linking models, suggesting that the shifts in receptive fields and in neural firing patterns can
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directly account for the behavioral effects (Klein, Paffen, Pas, & Dumoulin, 2016; Vo, Sprague, &

Serences, 2017; Cohen & Maunsell, 2011, 2009). Other modeling work has shown that these recep-

tive field shifts are broadly consistent with gain changes in early visual cortex (Baruch & Yeshurun,

2014; Miconi & VanRullen, 2016). Taken together, these results demonstrate a direct computational

link between the changes in sensory representations in visual cortex and the behavioral effects of

covert spatial attention.

In more complex tasks these direct link sometimes breaks down. In a recent paper Pestilli et al.

(2011) found that a simple linking model of response gain during spatial attention was quantitatively

insufficient to explain behavior. In that work, the authors found that to explain behavior two steps

were necessary: a change in sensory representation, combined with a particular form of readout.

Together these were able to capture how the seemingly small changes in sensory representation could

lead to large improvements in perceptual sensitivity. Because the authors observed a correlated

sensory change during attention an incorrect conclusion could easily have been made here. The

linking model was necessary to demonstrate that the scale of changes in the neural representation

were incompatible with the scale of behavior enhancement during attention.

Linking models have also been used to try to isolate which sensory responses are of the right

magnitude and shape to explain behavioral performance. For example, contrast discrimination can

be linked to representations in early visual cortex, because of their corresponding scales (Boynton,

Demb, Glover, & Heeger, 1999). This approach has also been used to identify neurons that may

individually contribute to perceptual decisions (Newsome et al., 1989).



Chapter 2

A quantitative framework for

motion visibility in human cortex

2.1 Introduction

Much of the neural basis of perception has been revealed by manipulations that control the visibility

of motion stimuli. For example, global motion direction of random-dot stimuli is made less visible

by decreasing motion coherence, i.e., the percentage of dots moving in the same direction. At lower

visibility levels, small changes in cortical signals manifest in measurable behavioral effects, thus doc-

umenting direct links between cortical physiology and perception (Britten, Shadlen, Newsome, &

Movshon, 1992; Newsome et al., 1989) and uncovering neural signals supporting evidence accumula-

tion (Huk & Shadlen, 2005; Katz, Yates, Pillow, & Huk, 2016; Roitman & Shadlen, 2002; Shadlen,

Britten, Newsome, & Movshon, 1996; Shadlen & Newsome, 2001). Making stimuli brief also renders

them less visible, aiding, for example, the study of information integration across eye movements

(Melcher & Morrone, 2003). Increasing image contrast, the average difference between bright and

dark (Bex & Makous, 2002), makes stimuli more visible and cortical responses monotonically larger

allowing links to be made between cortical response and perception (Boynton et al., 1999; Ress,

Backus, & Heeger, 2000; Ress & Heeger, 2003), disambiguating mechanisms for spatial attention

(Carrasco, Penpeci-Talgar, & Eckstein, 2000; Hara, Pestilli, & Gardner, 2014; Hara & Gardner,

2014; Pestilli et al., 2011), uncovering neural correlates of conscious perception (Lumer, Friston, &

Rees, 1998; Wunderlich, Schneider, & Kastner, 2005), and revealing the effects of putative priors

(Stocker & Simoncelli, 2006; Vintch & Gardner, 2014). While each of these manipulations has been

used extensively in the human perceptual literature, they can have greatly different effects on human

neural response. Given the central importance of motion visibility, a quantitative model of response

across human visual cortex is required to provide a framework for interpreting and building upon

13
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these various findings.

Such a population response model must quantitatively account for the shape of the relationship

between motion visibility and cortical response. The response function for contrast has been charac-

terized as a sigmoidal function for measurements in single units (Albrecht & Hamilton, 1982; Sclar,

Maunsell, & Lennie, 1990) and populations (Avidan et al., 2002; Boynton, Engel, Glover, & Heeger,

1996; Boynton et al., 1999; Gardner et al., 2005; Logothetis, Pauls, Augath, Trinath, & Oeltermann,

2001; Olman, Ugurbil, Schrater, & Kersten, 2004; Tootell et al., 1998a). Increasing motion coherence

typically results in linear increases in response (Aspell, Tanskanen, & Hurlbert, 2005; Britten et al.,

1993; Händel, Lutzenberger, Thier, & Haarmeier, 2007; Rees, Friston, & Koch, 2000; Simoncelli &

Heeger, 1998) although this may depend on the exact stimulus parameters (Ajina, Kennard, Rees,

& Bridge, 2015).

A population response model must also quantify the variable sensitivity to visibility parameters

across cortical areas. The earliest cortical areas have a larger dynamic range for contrast compared

with later areas which are more invariant (Avidan et al., 2002; Cheng, Hasegawa, Saleem, & Tanaka,

1994; Rolls & Baylis, 1986; Sclar et al., 1990). Less is known about motion coherence sensitivity

except that the neural response to coherent compared with incoherent motion or blank evokes a

large response in the human middle temporal area (hMT+, referred to as MT) with some sensitivity

reported in earlier visual cortical areas (Ajina et al., 2015; Costagli et al., 2014; Dupont, Orban,

De Bruyn, Verbruggen, & Mortelmans, 1994; Heeger, Boynton, Demb, Seidemann, & Newsome,

1999; Watson et al., 1993; Zeki et al., 1991) and parietal and ventral regions (Braddick et al., 2001).

Finally this model must account for stimulus duration effects. Hemodynamic responses to visual

stimuli are approximately temporally linear except when durations (Boynton et al., 1996; Boynton,

Engel, & Heeger, 2012) or inter-stimulus intervals (Huettel & McCarthy, 2000) are brief. The

divergence from linearity may differ across cortical areas (Birn, Saad, & Bandettini, 2001) and

motion-sensitive regions may be most sensitive to transient changes (Stigliani, Jeska, & Grill-Spector,

2017).

Here we measured blood-oxygen-level dependent (BOLD) (Ogawa, Lee, Kay, & Tank, 1990)

response in human observers to a large range of contrast, coherence and duration of motion stimuli,

and built a quantitative model linking these visibility properties with physiological response in

retinotopically defined visual areas. Sensitivity to these parameters varied significantly across areas,

although all were sensitivity to both contrast and coherence without interaction. While perceptual

experiments have often used different means of affecting visibility interchangeably our results provide

a reference model that underscores the differences in response to each manipulation of visibility across

cortical areas, thus providing a quantifiable way to interpret experiments that link cortical response

to perception.
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2.2 Methods

2.2.1 Observers

In total, 11 observers (8 female, 3 male; mean age 26 y; age range 1936 y) were subjects for

the experiments. All observers except one (who was an author) were naive to the intent of the

experiments. Observers were scanned three times, in 2 two-hour sessions of the experiment and a

one hour retinotopy session. Procedures were approved in advance by the Stanford Institutional

Review Board on human participants research and all observers gave prior written informed consent

before they participated in the experiment. When necessary, observers wore corrective lenses to

correct their vision to normal.

2.2.2 Hardware setup for stimulus and task control

Visual stimuli were generated using MATLAB (The MathWorks) and MGL (Gardner, Merriam,

Schluppeck, & Larsson, 2018a) (http://gru.stanford.edu/mgl). Stimuli were backprojected via an

Eiki LC-WUL100L projector (resolution of 1,9001,200, refresh rate of 100 Hz) onto an acrylic sheet

mounted inside the scanner bore near the head coil. Visual stimuli were viewed through a mirror

mounted on the head coil and responses were collected via an MRI-compatible button box. Output

luminance was measured with a PR650 spectrometer (Photo Research) and a neutral density filter

used to set the average screen luminance to 300 cd/m2. The gamma table was then dynamically

adjusted at the beginning of each trial to linearize the luminance display such that the full 10-bit

output resolution of the gamma table could be used to display the maximum contrast needed. Other

sources of light were minimized during scanning.

2.2.3 Eye tracking

Prior to the experiment subjects were extensively trained on a behavioral task requiring precise

fixation. Eye tracking was performed using an infrared video-based eye-tracker at 500 Hz (Eyelink

1000; SR Research). Calibration was performed throughout each session to maintain a validation

accuracy of less than 1◦average offset from expected using either a 10-point or 13-point calibration

procedure. Trials were canceled online when observers eyes moved more than 1◦away from the

fixation cross for more than 300 ms. After training, canceled trials consisted of fewer than 0.1% of

all trials. Due to technical limitations eye tracking was not performed inside the scanner.

2.2.4 Experimental design

Motion stimuli consisted of two patches of moving dots and a central cross (1× 1◦) on which observers

maintained fixation. The dot patches were rectangular regions extending from 3.5 to 12◦horizontal

and 7 to 7◦vertical. Each patch was filled with 21 dots/deg2, 50% brighter and 50% darker than
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the gray background (300 cd/m2). Both patches maintained a constant baseline in between trials of

25% contrast and incoherent motion. During a trial, the patches increased in either or both contrast

and coherence. To minimize involuntary eye movements, the coherent dot motion direction was

randomized to be horizontally inward or outward from fixation on each trial, such that each patch

moved in opposite direction. All dots moved at 6◦/s updated on each video frame. Motion strength

was adjusted by changing motion coherence; that is, the percentage of dots that moved in a common

direction with all other dots moving in random directions. Dots were randomly assigned on each

video frame to be moving in the coherent or random directions.

We measured the cortical response to a wide range of brief increments of stimulus contrast and

coherence of variable duration while observers performed an independent and asynchronous task at

fixation (Fig. 2.1). Each scan began with a 30-s baseline period (25% contrast, 0% coherence) to

allow visual cortex to adapt. Each trial consisted of a brief increment in either or both the contrast

and motion coherence of the dot patches. The dot patches then returned to baseline (25% contrast,

0% coherence) for an inter—trial interval of 2 to 11 s (mean 6.5 s) randomly sampled from an

exponential distribution. The next trial then began synchronized to the next volume acquisition

of the magnet. Stimulus increments were chosen to be +0, +25, +50, or +75% above the baseline

25% contrast and +0, +25, +50, +75, or +100% above the baseline 0% coherence and lasted for

250, 500, 1,000, 2,000, 2,500 or 4,000 ms (or as close to these durations as the display frame refresh

would allow). We presented trials in two sets; a complete cross set in which all combinations of

contrast and coherence changes at 2,500 ms duration were presented (4 contrasts5 coherences =

20 conditions) and a duration set in which a subset of the contrast and coherence combinations

(+25 or +75 contrast and +25 or +100 coherence) were presented for variable stimulus durations

(4 contrast and coherence combinations × 5 stimulus durations = 20 conditions). Thus, across

the complete cross and duration sets, there was a total of 40 conditions (20 each in the complete

cross and duration sets). For each condition we acquired a minimum of 20 repeated presentations

throughout the scan sessions of each observer, resulting in a minimum of 800 trials total. The two

trial sets were presented in separate scans interleaved within sessions. Condition order within each

scan, for both trial sets, was randomized independently for the stimulus on the left and right such

that in every block of 40 trials all conditions were presented in both dot patches.

While these stimuli were being presented for the passive viewing condition, the observer was

required to perform a luminance decrement task on the fixation cross. The fixation cross decremented

twice in luminance for 400 ms, separated by an 800-ms interstimulus interval and the observer

reported with a button press which decrement interval appeared darker (see Gardner, Merriam,

Movshon, and Heeger (2008) for details). Decrement amplitude was adjusted according to a staircase

procedure to maintain 82% correct.
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2.2.5 MRI acquisition and preprocessing

Visual area mapping and cortical measurements were obtained using a multiplexed sequence on a 3

Tesla GE Discovery MR750 (GE Medical Systems) with a Nova Medical 32ch head coil. Functional

images were obtained using a whole-brain T2*-weighted two-dimensional gradient-echo acquisition

(FOV = 220 mm, TR = 500 ms, TE = 30 ms, flip angle = 46◦, 7 slices at multiplex 8 = 56 total

slices, 2.5 mm isotropic). In addition, two whole-brain high-resolution T1-weighted 3D BRAVO

sequences were acquired (FOV = 240 mm, flip angle = 12◦, 0.9 mm isotropic) and averaged to

form a canonical anatomical image which was used for segmentation and surface reconstruction and

session-to-session alignment. A T2*-weighted scan with the phase encoding direction reversed was

collected in each session and used in combination with the FSL function TOPUP to correct for

distortions due to high multiplex factors (Andersson, Skare, & Ashburner, 2003). In each functional

session, we also obtained a session anatomical image for alignment with the canonical anatomy

using a T1-weighted 3D BRAVO sequence (FOV = 240 mm, flip angle = 12◦, 1.2 × 1.2 × 0.9 mm).

Analysis was performed using custom MATLAB software (Gardner, Merriam, Schluppeck, Besle, &

Heeger, 2018b).

Session anatomies were aligned to the canonical anatomy and data were displayed on flattened

cortical surfaces for visualization and for defining visual areas. Gray matter and white matter

segmentation was performed on the canonical anatomy using FreeSurfer (Dale, Fischl, & Sereno,

1999) and flattened triangulated surfaces used for displaying data. Each session anatomy, was

aligned to the canonical anatomy using image-based registration (Nestares & Heeger, 2000) so that

the location of mapped cortical visual areas could be projected into each sessions space. All data

analysis was performed in the native coordinate of the functional scan without transformation.

Cortical visual area mapping was performed using a population receptive field mapping technique

(Dumoulin & Wandell, 2008). Observers performed the fixation task described above while a moving-

bar stimulus moved across the visual field in different directions. The measured responses were used

to estimate the voxel-wise population receptive field and then the eccentricity and polar angle of each

receptive fields was projected onto a flattened representation of the cortical surface where visual areas

were identified according to published criteria by hand (Gardner et al., 2008; Wandell et al., 2007).

Each moving bar stimulus scan lasted 4 min and the same randomization sequence was repeated and

averaged eight times to improve the signal-to-noise ratio. The stimulus was a full contrast 3◦width

bar spanning the entire display. Inside the bar a full contrast cross-hatch pattern of black and white

rectangles moved continuously to minimize adaptation. Each of the 4-min scans began with a 12

s blank followed by eight 24-s cycles in which the bar swept across the entire screen in one of the

eight cardinal or oblique directions. Two additional 12 s blanks occurred after the third and sixth

bar sweeps to help estimate large population receptive fields. The bar swept across the visual field

at 2◦/s. The screen was crescent shaped and extended 25◦vertical and 50◦horizontal. Beyond

the screen boundaries the image was blacked out to prevent artifacts from reflecting on the scanner
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bore. We were able to consistently map V1-hV4, V3A/B, V7 (IPS0) and hMT+ (referred to as MT;

see Huk, Dougherty, and Heeger (2002), Amano, Wandell, and Dumoulin (2009)) in all observers.

Areas LO12, VO12, and IPS13 were not consistently identified and were therefore excluded from

analysis.

Motion correction, linear trend removal, filtering, and averaging across cortical visual areas were

performed to obtain a single time course for each cortical area for each observer. T2*-weighted

images were motion corrected with a rigid body alignment using standard procedures (Nestares &

Heeger, 2000). Scans within each session were linearly detrended, high-pass filtered with a cutoff

frequency of 0.01 Hz to remove low-frequency drifts, converted to percent signal change by dividing

each voxels time course by its mean image intensity within each scan, and then concatenated across

scans.

Analyses of responses of cortical areas were conducted by averaging the time series of voxels

whose trial-triggered response across all conditions accounted for the highest amount of variance

within each retinotopically defined visual area. Specifically, we performed an event-related analysis

to recover the response evoked by each trial (regardless of condition), using the following equation

to model voxel responses

y = xβ + ε (2.1)

where y is an n × 1 array representing the time-series of BOLD response for n volumes from

a single voxel. X is an n × k stimulus convolution matrix in which the first column contains a

one for the volume when each trial began and zeros elsewhere. Each subsequent column is shifted

downwards by one to form a Toeplitz matrix and k was set to 81 to model responses as occurring

from the time of stimulus presentation through 40.5 s later. Each voxel is assumed to have additive

Gaussian noise with variance . By computing the least-squares estimate of the column vector β,

we obtained the finite impulse response evoked by all trials, that is, the average response after a

trial accounting for linear response overlap. We computed r2, the amount of variance accounted for

by this model (Gardner et al., 2005). We then averaged the time series of the top 25 voxels per

cortical area sorted by r2. While we chose this voxel selection criterion to produce high signal-to-

noise estimates of each cortical areas response, our conclusions did not depend on its use. Repeating

the complete analysis using either all voxels in each cortical area, the top two voxels, or all voxels

weighted by their receptive field overlap with the stimulus results in a change in the signal-to-noise

in the data but did not qualitatively change the key findings.

To examine how the hemodynamic response for each cortical area changed as a function of

stimulus condition (Fig. 2.2), we computed the finite impulse response for each condition in the

passive viewing experiment. That is, we computed the finite impulse response as above, but allowed

for a separate response for each of the 20 conditions in the cross set and 20 in the duration set. Our

complete stimulus convolution matrix therefore had 3,240 columns (81 volumes by 40 conditions),
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while each observers data consisted of at minimum 13,440 time points and up to 30,000 time points

in some observers. Solving for the least squares solution results in hemodynamic response for each

of the 40 conditions in the experiment which we call the measured cortical response.

2.2.6 Population response functions

Overview

Using the measured cortical responses we then estimated the population response functions for

contrast and coherence in each cortical visual area. Our model framework and measurements are

available online, as a tool for experiment design and comparison with existing results (Birman &

Gardner, 2018). Following previous work examining the relationship between contrast or coherence

and BOLD response (Avidan et al., 2002; Boynton et al., 1996; Boynton et al., 1999; Gardner et al.,

2005) (Heeger, Huk, Geisler, & Albrecht, 2000; Logothetis et al., 2001; Olman et al., 2004; Rees

et al., 2000; Tootell et al., 1998a) we assumed that there was a smooth functional form (linear,

exponential or sigmoidal, see details below) between the contrast and coherence of the stimulus and

the magnitude of neural response. For each trial, the magnitude of neural response was computed as

the linear sum of the response to contrast and coherence predicted by these smooth functions and a

trial onset response that was the same across all conditions (interaction terms between contrast and

coherence were tested and compared against simpler models by cross-validated variance explained).

The neural magnitude was used to scale the magnitude of a boxcar function of the appropriate

duration exponentially scaled (see below) to account for nonlinear effects of duration. The resulting

time series was then convolved with a canonical hemodynamic response function estimated from the

data. The parameters of the population response functions and magnitude of the trial onset response

were then adjusted to best fit the event-related responses in the least squares sense through nonlinear

fitting routines (active-set algorithm implemented in lsqnonlin in MATLAB). To avoid over-fitting

and to compare models with different numbers of parameters, we evaluated models according to

the cross-validated r2 by performing a leave-one-condition out cross-validation, using 39 of the 40

stimulus conditions to train the model while predicting on the left out condition. We proceeded

with this analysis in two steps: characterizing the canonical hemodynamic response and duration

effects, and then fitting the population response functions parameters.

Canonical hemodynamic response function and duration effects

We first fit parameters of the canonical hemodynamic response function and duration effects, ignoring

the effect of contrast and coherence. To do so we fit the population response model with arbitrary

scaling factors (beta weights) for each of the 40 conditions. This approach allowed us to determine

the shape parameters of the hemodynamic response function and temporal non-linearity without

being biased by magnitude differences across conditions.
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We characterized the shape of the canonical hemodynamic response function for each observer

with a difference of two gamma functions:

rcanonical(t) = Γ1(t)− Γ2(t) (2.2)

Γ(t) =


α[
t−t0
τ ]n−1e

−1
τ

τ(n−1)! , t >= 0

0, otherwise
(2.3)

Where α is the amplitude, t0 is the time lag such that when t < t0 the function is zero, and

n and τ control the shape of the function. The parameter α was set such that the peak response

to a 500-ms stimulus was 1. Thus the reported percent signal change in the population response

functions are relative to a 500-ms stimulus.

We accounted for nonlinear effects of temporal summation in the BOLD response by allowing

responses to be exponentially scaled. Small variations in duration are known to scale in an approx-

imately linear manner (Boynton et al., 1996) whereas across large variation in stimulus durations

the response to longer durations is less than expected by a linear system (Boynton et al., 2012). We

are agnostic to the source of this effect, which could result from either neural adaptation (Buxton,

Uludağ, Dubowitz, & Liu, 2004) or due to saturation of the BOLD signal (Friston, Josephs, Rees,

& Turner, 1998). We took the response of the 500 ms duration stimulus as the baseline and scaled

shorter and longer responses according to the inverse ratio of the durations raised to a fit param-

eter δ (i.e., a 1,000-ms stimulus has a ratio of 1000
500

−δ
= 2−δ). This final value corresponds to the

proportion of a linear response that occurred and the boxcar of appropriate duration was scaled by

this value.

Altogether we fit the parameters for two gamma functions in the canonical hemodynamic response

function (α, t0, τ), the duration effect δ and 40 beta weights for stimulus conditions to the event-

related responses. The canonical hemodynamic response function parameters and the duration

parameter were then used in the estimation of the population response functional forms while the

beta weights were discarded.

Functional forms

To characterize the population responses of each visual area to changes in contrast and motion co-

herence we fit functional forms to the underlying neural population response functions. We assumed

that these population response functions would be monotonically increasing for both contrast and

coherence. For contrast, we parameterized the relationship between contrast and neural response as

a sigmoidal function (Naka & Rushton, 1966) following previous work (Albrecht & Hamilton, 1982):

Rcon(scon) = αcon(
s1.9con

s1.6con + σ1.6
) (2.4)
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where α is the maximum amplitude of the function and σ controls the shape of the function. We

fixed the exponent parameters of the Naka-Rushton to 1.9 and 1.6 based on previous work (Boynton

et al., 1999). To avoid making assumptions about the coherence response function we assumed that

the form would either be linear or a saturating non-linearity motivated by previous work (Rees et al.,

2000; Simoncelli & Heeger, 1998). The saturating non-linearity was an exponential function but can

interpolate smoothly between a linear and nonlinear function.

Rcoh(scoh) = αcoh(1− e
scoh
κ ) (2.5)

In the exponential function the parameter κ controls the shape of the function by setting the

point at which the exponential function reaches 63% of its maximum and α controls the amplitude.

Large values of κ combined with large values of α make this function approach linear in the range

[01] in which the stimulus strength scoh is bounded.

To assess whether and to what extent contrast and motion coherence interact we included an

additional parameter in the population response function model. The parameter βinteraction scaled

the multiplicative effect of contrast and motion coherence according to the following equation:

Rinteraction(scon, scoh) = βinteractionRcon(scon)Rcoh(scoh) (2.6)

The full model of neural response was computed as the sum of the contrast and coherence

response, the interaction term, and a constant stimulus onset effect Ronset.

Rneural(scon, scoh) = Rcon(scon) +Rcoh(scoh) +Rinteraction(scon, scoh) +Ronset (2.7)

We evaluated the fit of the full model with and without the additional interaction parameter

by comparing the cross-validated variance explained. We also fit an alternative interaction model

in which different population response functions were allowed to fit for conditions in which only

one feature changed (i.e., the first column and last row of the grid in Fig. 2.2A) compared with

conditions in which both features changed (other parts of the grid in Fig. 2.2A).

We fit the free parameters of the population response functions by constraining the fits on each

observers cortical measurements (Fig. 2.4). To do this we computed the neural response Rneural and

then scaled this by the boxcar of appropriate duration for each stimulus condition. The boxcar was

additionally scaled according to the duration parameter. Finally we convolved this scaled boxcar

with the canonical hemodynamic response resulting in a predicted hemodynamic response for each

stimulus condition.

To evaluate whether the parameters we fit differed across subjects and across cortical areas we

fit a linear model for each parameter. We first performed model comparison to establish whether

each parameter was better explained by a model with only an intercept, a per-subject effect, a

per-area effect, or a per-subject and per-area effect. For each parameter we fit all four models
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(using the function fitlme in MATLAB) and retained the most complex model which resulted in a

statistically significant improvement in prediction, assessed via partial F-test. For each parameter

we then investigated which observers and cortical areas showed statistically significant differences

relative to the mean parameter value as reported in Tables 2.1—2.3.

2.2.7 Computing stimulus sensitivity

For each cortical area we computed various measures of sensitivity to contrast and motion coherence.

In particular, we examined the contrast parameter, which controls the maximum response of the

Naka-Rushton function. Because in the range we measured the slopes are approximately linear

and the Ronset term absorbs the stimulus-independent response, contrast tracks the slope of the

relationship between contrast and response and therefore is a measure of sensitivity to contrast.

The parameters of the exponential form of the coherence function we used are not interpretable in

isolation so instead we took the population response functions for coherence and measured their

response range by performing a linear fit. We report the slope of that fit as the sensitivity to

coherence.

The measurements of sensitivity which we report will be sensitive to the signal-to-noise of our

measurements. This could be particularly problematic because signal magnitude and variability may

depend on whether there are sinuses or large draining veins in a cortical region which are known to

have large signals with high variability. Also, differences in signal-to-noise that are due to proximity

to receiver coils or partial voluming effects may bias our measurements of sensitivity, particularly

making comparisons across different areas problematic. In addition if variance is proportional to the

mean as it is expected to be for single neurons or Poisson-like processes (Softky & Koch, 1993), then

measures of population sensitivity would need to be scaled appropriately as response magnitude

grows. We therefore examined the variability of response in each cortical visual area. First, we fit

a canonical hemodynamic response function to all trials as described above. We then fit a general

linear model using this canonical hemodynamic response and allowed each trial to have a separate

beta weight. That is, we found the scale factor (beta weight) for every single trial which best fit

the measured time course in the least squares sense, accounting for linear overlap across trials, for

each observer for every cortical area. To avoid response variance associated with different stimulus

strengths, we grouped the scale factors by condition (20 contrast and coherence; 20 duration) and

computed the standard deviation. This results in 3,520 measurements of standard deviation (11

observers × 8 cortical areas × 40 conditions) each of which was computed from 25 trials. If the

microvasculature, coil proximity, or partial voluming in different cortical areas resulted in differences

in variability, or if contrast or coherence caused the variability to increase, we would expect that

these measurements of standard deviation would consistently vary with those parameters. We tested

for this by fitting a series of linear models in which the standard deviation depended on either an

intercept alone, each conditions contrast, coherence, cortical area, or random effect of subject, and
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all the effects together. We also tested models in which the contrast and coherence effects could

differ by area. We performed model comparison by testing for improvement over the intercept-only

model via partial F-test.

2.3 Results

30 s 

Baseline Stimulus
durations

2-11 s

Inter-trial interval

Stimulus

Time

0.25 s
0.5 s

1 s
2 s

2.5 s
4 s

(variable)

Figure 2.1: Cortical measurement experiment. Observers were shown patches of moving dots that
increased in contrast and motion coherence on each trial. A 30-s baseline period preceded each scan
with 25% contrast dots and incoherent motion and the baseline dots persisted between trials. On
each trial the contrast increased by 0, 25, 50, or 75% and the coherence by 0, 25, 50, 75, or 100%
for a stimulus duration of 250 to 4,000 ms. Observers performed an asynchronous task at fixation
throughout the experiment.

2.3.1 Measuring cortical responses to contrast and motion coherence.

We characterized human cortical responses to changes in contrast and motion coherence of patches

of dynamic random-dot stimuli by measuring BOLD responses while observers passively viewed two

patches of moving dots (Fig. 2.1). Each scan began with 30 s of baseline stimulus presentation

(0% coherence, 25% contrast) after which trials consisting of brief increments (0.254 s) in either

or both coherence and contrast before returning back to baseline for a random length intertrial

interval (211 s) (see methods for full details). In total observers were shown 40 conditions: 20

consisted of combinations of changes in contrast (+0, +25, +50, and +75%) and changes in motion

coherence (+0, +25, +50, +75, and +100%) for 2,500 ms each, the remaining 20 were a subset of

these combinations combined with variable stimulus durations (250, 500, 1,000, 2,000, and 4,000

ms). To minimize task-dependent effects and maintain a consistent level of engagement, observers

performed an independent fixation task during viewing. We computed hemodynamic responses to

each stimulus condition for each observer using an event-related analysis for retinotopically defined

visual areas V1, V2, V3, hV4, V3A, V3B, V7, and MT. We begin by describing responses in visual
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areas V1 (Fig. 2.2A) and MT (Fig. 2.2B), as they are well known to be sensitive to contrast (Avidan

et al., 2002; Boynton et al., 1996; Gardner et al., 2005; Logothetis et al., 2001; Olman et al., 2004;

Tootell et al., 1995; Tootell et al., 1998a) and motion coherence (Britten et al., 1993; Händel et al.,

2007; Rees et al., 2000; Simoncelli & Heeger, 1998), respectively.

We observed clear parametric sensitivity to increases in contrast in V1 but weaker sensitivity in

cortical area MT. Our measurements in V1 confirm previous results (Gardner et al., 2005; Logothetis

et al., 2001; Tootell et al., 1995; Tootell et al., 1998a). The contrast sensitivity of V1 can be

appreciated as monotonically increasing response magnitudes for higher levels of contrast increments

(top left orange traces, Fig. 2.2A). These traces are for a stimulus duration of 2.5 s collapsing across

motion coherence increments, i.e., averaging each row in the full response grid. While MT was also

sensitive to increments of contrast, the monotonic increase appeared less pronounced compared with

V1 (top left orange traces, Fig. 2.2B), consistent with other reports that have noted MT as having

near maximal responses to small changes to contrast (Sclar et al., 1990; Tootell et al., 1995).

For motion coherence, we found the opposite pattern: MT was much more sensitive to increments

in motion coherence compared with V1. MT showed clear monotonic increasing responses with

increasing motion coherence (bottom right purple traces, Fig. 2.2B). These traces are again for

a stimulus duration of 2.5 s averaged over contrast increments, i.e., collapsing each column in the

full response grids. In V1 there was little difference in response amplitude as a function of motion

coherence, i.e., weak sensitivity to coherence (bottom right purple traces Fig. 2.2A).

While V1 showed little parametric sensitivity to difference in coherence and MT little sensitivity

to difference in contrast, both show a large response to the smallest increment of these parameters.

This consistent trial-by-trial response, which we call the stimulus-onset response, appears unrelated

to our parametric manipulations. For example, despite showing little sensitivity to different levels

of coherence all of the responses for V1, including the one induced by the least change in coherence

(+25%), induced a large response relative to the baseline (purple traces, Fig. 2.2A). Similarly, for

MT and contrast as can be appreciated by noting that increasing contrast by 25% (orange traces,

Fig. 2.2B) resulted in a large response. Part of this apparently large response is due to the fact

that these responses for contrast or coherence are averaged over changes in the other parameter.

That is, increases in contrast are shown averaged over coherence and vice versa. However this is

not the complete story as can be appreciated by examining the grid of responses to each parameter

separately (small bold black traces in grid, Fig. 2.2A and B). V1 can be seen to respond to a small

change in coherence (+25, along horizontal) when there is no change (+0, along vertical) in contrast

and vice versa for MT. These relatively large responses, to a feature each area is not strongly sensitive

to, suggests that there is a response to stimulus onset regardless of condition.

Motion visibility is also adjusted by reducing the duration of stimuli, often in conjunction with

reduced contrast and coherence. Along with the measurements described above, for which the

stimulus duration was 2.5 s, we tested a large array of different durations from 0.25 to 4 s. As



CHAPTER 2. A FRAMEWORK FOR MOTION VISIBILITY 25

Cortical area V1

0.5 s
1 s
2 s
4 s

Duration

0.25 s

 +25%
 +50%
 +75%

Contrast 

Time (s) S
ig

na
l (

%
)

 

+7
5

+5
0

+2
5

+0
C

ha
ng

e 
in

 c
on

tra
st

 (%
)

Change in coherence (%)
1

10

A

Cortical area MT (hMT+)B

Si
gn

al
 c

ha
ng

e 
(%

)

0 5 10 15

−0.5
0

1

 +25%
+50%
+75%

 +100%
Coherence

0 5 10 15

−0.5
0

1

Time (s)

0 5 10 15

−0.5
0

1

Dura
tio

n

+0

+7
5

+5
0

+2
5

+0

+25 +50 +75 +100

C
ha

ng
e 

in
 c

on
tra

st
 (%

)

Change in coherence (%)

Si
gn

al
 c

ha
ng

e 
(%

)

Time (s)
0 5 10 15

−0.5

0

1

0 5 10 15

−0.5

0

1

0 5 10 15

−0.5

0

1

+0 +25 +50 +75 +100

Figure 2.2: Measurements of event-related responses in cortical areas V1 and MT. A: cortical area V1.
To obtain the individual responses shown here we performed an event-related analysis on our time
series. In total we included 40 conditions in the experiment: 20 consisted of a full cross of changes
in contrast and/or coherence presented for 2,500 ms (shown in bold in the grid in the bottom left)
and 20 were a subset of the full cross conditions presented for various durations (shown in diagonal
for the four conditions with additional durations recorded). We measured cortical responses to
changes in contrast (top left) where each trace is averaged over changes in coherence, i.e., each
response is the average of a row in the bottom left grid. We also measured responses to changes in
coherence (bottom right), each trace is averaged over changes in contrast, i.e., each response is the
average of a column in the grid. We made additional measurements across a large range of stimulus
durations (top right) also shown in the grid. B: as in A for cortical area MT (hMT+). In all panels
the event-related responses are averaged across observers and error bars indicate the bootstrapped
95% confidence interval; some error bars may be hidden. Note that for visualization event-related
responses are only shown out to 15 s but the analysis used a window of 40.5 s.
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expected of an approximately linear system (Boynton et al., 2012) we observed that responses scaled

with stimulus duration in both cortical areas V1 and MT (top right gray traces, Fig. 2.2A,B).

Across the rest of the visual areas that we were able to retinotopically define in all subjects (V2,

V3, hV4, V3A, V3B, and V7) we found similar parametric sensitivity to contrast, motion coherence

and stimulus duration (Fig. 2.3). In general, and in concordance with previous reports (Avidan

et al., 2002) we found less parametric sensitivity to changes in contrast for visual areas higher up in

the visual hierarchy in the range we measured (+25 to +75% contrast). Sensitivity to coherence was

observed in a number of the visual areas, although MT and to a lesser extent V3A were the clear

stand-outs in showing monotonically increasing responses to this parameter. These observations will

be quantified below.

2.3.2 Fitting population response functions to cortical responses.

To quantify the parametric sensitivity to contrast and coherence of each visual area we fit the

event-related responses with a population response model using idealized functional forms for the

relationship between contrast and coherence and neural response (Fig. 2.4). Based on previous work

we expected that the population response to contrast would be a sigmoidal function (Albrecht &

Hamilton, 1982; Sclar et al., 1990; Boynton et al., 1999) with the form of a Naka-Rushton equation

(Fig. 2.4B, orange curve) (Naka & Rushton, 1966). To avoid overfitting, we fixed the exponents in

the equation based on previous work (Boynton et al., 1999) and only allowed σ and αcon to vary.

For motion coherence, we allowed for a functional form that can smoothly interpolate between linear

(Britten et al., 1992, 1993; Simoncelli & Heeger, 1998; Rees et al., 2000) and a saturating exponential

(Fig. 2.4B, purple curve). Finally, we included an onset term to capture the portion of response

that did not vary across all conditions which presumably reflects stimulus onset and not parametric

variation of stimulus parameters.

To predict the BOLD response from the modeled contrast and coherence response functions, we

employed a linear-systems approach (Heeger et al., 2000; Rees et al., 2000; Logothetis et al., 2001).

To account for different durations of stimuli, we multiplied the response magnitude predicted by the

onset, contrast, and coherence functions with a boxcar function of appropriate length (Fig. 2.4C). As

it is known that brief stimuli evoke response larger than expected by linearity (Boynton et al., 1996;

Boynton et al., 2012), we also scaled the boxcar magnitude with an exponential that accounted for

this nonlinearity in response. This scaled boxcar was then convolved with a hemodynamic response

function (Fig. 2.4D) whose parameters were adjusted to best fit the event-related responses across

all conditions (Fig. 2.4E). All together, we fit the model parameters for the contrast function

(αcon, σ), coherence function (αcoh, κ) and temporal effects (δ, Ronset), and the parameters for

the hemodynamic response function (t0, τ0, t1, τ1, α1) for each observer for each visual area by

minimizing the sum of least squares between the output of the model and the event-related responses

for each of the 40 conditions.
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Figure 2.3: Measurements of event-related responses in cortical areas V2—V7. A—F: conventions
are the same as in Fig. 2.2
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Figure 2.4: Population response function model. A: Each condition in the experiment was defined by
three parameters: the increment in contrast above baseline (+0, +25, +50, or +75%), the increment
in coherence above baseline (+0, +25, +50, +75, +100%), and the stimulus duration (250, 500,
1,000, 2,000, or 4,000 ms). As an example we use condition 1 to demonstrate the model. B: to
estimate the response to each feature within a condition we first find the change in response due
to the corresponding change in stimulus intensity according to the population response functions.
For contrast the population response function is a Naka-Rushton with two free parameters: αcon
controlling the amplitude and σ the shape. For coherence the response function was a saturating
non-linearity with two free parameters: coherence controlling the amplitude and the shape. We
added the resulting change in response together (while testing for interaction effects, see methods)
and included an onset parameter to account for stimulus response that did not vary parametrically
with the stimulus features. C: the total response, including onset, was used to scale a boxcar function
whose length matched the stimulus duration. The boxcar was additionally scaled by a parameter to
account for the nonlinear effect of stimulus duration. D: the resulting boxcar was convolved with a
canonical hemodynamic response function fit separately for each observer. E: the model outputs a
prediction for each condition about the expected event-related response (red lines). The parameters
within the population response function model were then optimized to minimize the sum of squared
errors between the data (black markers) and the model responses.



CHAPTER 2. A FRAMEWORK FOR MOTION VISIBILITY 29

Hemodynamic response Contrast Coherence Onset
Area tau0 tau1* α1 αcon* σ* $\alpha {coh} κ Ronset*

V1 0.51 (0.05) 1.80 (0.42) -0.24 (0.06) 1.68 (1.18)
0.35 (0.14)
(p=0.006)

13.94 (32.04) 2.11 (6.79)
0.42 (0.24)
(p<0.001)

V2 0.52 (0.06) 1.79 (0.44) -0.24 (0.08) 0.69 (0.57) 0.40 (0.13) 21.27 (27.42) 0.40 (1.06) 0.28 (0.16)

V3 0.52 (0.07) 1.79 (0.59) -0.24 (0.09) 0.63 (0.34) 0.43 (0.13) 13.23 (26.11) -0.61 (3.13)
0.30 (0.12)
(p=0.013)

V4 0.52 (0.07) 1.83 (0.93) -0.24 (0.09) 0.61 (0.24) 0.47 (0.12) 14.05 (22.42) -1.83 (5.98) 0.21 (0.13)

V3A 0.52 (0.07) 1.79 (0.59) -0.24 (0.09) 0.35 (0.26) 0.48 (0.11) 3.41 (12.46) 1.05 (1.71)
0.15 (0.1)
(p=0.005)

V3B 0.52 (0.07) 1.79 (0.59) 0.24 (0.09)
0.24 (0.13)
(p=0.003)

0.43 (0.17) 7.99 (16.15) 0.29 (0.41)
0.14 (0.06)
(p=0.002)

V7 0.52 (0.07)
2.15 (0.87)
(p=0.032)

-0.23 (0.07)
0.32 (0.25)
(p=0.022)

0.53 (0.22) 9.80 (14.21) 1.11 (1.87)
0.09 (0.07)
(p<0.001)

MT 0.51 (0.04) 1.81 (0.63) -0.22 (0.09)
0.22 (0.25)
(p=0.001)

0.58 (0.32) 6.87 (17.60) 0.92 (1.07) 0.24 (0.09)

Table 2.1: Variability in parameter estimates across cortical areas

Hemodynamic response Onset
Observer τ0 τ1 α1 Ronset

1 0.53 (0.03)
2.12 (0.09)
(p=0.041)

0.24 (0.01)
0.31 (0.11)
(p=0.013)

2 0.50 (0.01)
2.09 (0.15)
(p=0.020)

0.23 (0.02) 0.28 (0.13)

3 0.53 (0.03) 1.80 (0.36)
0.20 (0.03)
(p<0.001)

0.06 (0.13)
(p<0.001)

4
0.41 (0.03)
(p<0.001)

1.29 (0.25)
(p<0.001)

0.13 (0.03)
(p<0.001)

0.22 (0.18)

5
0.45 (0.02)
(p<0.001)

3.09 (0.53)
(p<0.001)

0.10 (0.02)
(p<0.001)

0.29 (0.13)

6
0.54 (0.03)
(p=0.005)

2.41 (0.15)
(p<0.001)

0.22 (0.02) 0.18 (0.11)

7 0.51 (0.03) 1.77 (0.12)
0.27 (0.04)
(p<0.001)

0.12 (0.08)
(p=0.001)

8
0.61 (0.05)
(p<0.001)

1.47 (0.12)
(p<0.001)

0.33 (0.04)
(p<0.001)

0.33 (0.17)
(p=0.004)

9
0.54 (0.03)
(p=0.002)

2.05 (0.54)
(p<0.001)

0.22 (0.03)
(p=0.032)

0.32 (0.25)
(p=0.009)

10 0.54 (0.03)
1.18 (0.24)
(p<0.001)

0.34 (0.05)
(p<0.001)

0.20 (0.15)

11 0.52 (0.02)
1.02 (0.14)
(p<0.001)

0.33 (0.03)
(p<0.001)

0.24 (0.11)

Table 2.2: Variability in hemodynamic response and onset parameter estimates across observers

We report the main fit parameters of the hemodynamic response function and population re-

sponse function model across cortical areas (Table 2.1) and observers (Tables 2.2 and 2.3). We

assessed whether between-observer variability existed by fitting a linear model predicting each pa-

rameter with observers as categorical predictors and used the same procedure to assess for within-

observer variability across cortical areas (see methods). We found that there was statistically sig-

nificant between-observer variability across all of the parameters but only significant variability

within-observer (i.e., across cortical areas) for the shape parameter of the hemodynamic response τ ,

the magnitude and shape parameters of the contrast response function αcon and σ, the parameters of

the coherence response function αcoh and κ, and the onset parameter Ronset (significance established

by a partial F-test comparing linear regression models with and without each group of additional

parameters at the p = 0.05 threshold). Note that the κ and αcoh parameters which together control

both the shape and magnitude of the coherence response are hard to interpret in isolation.
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Contrast Coherence
Observer αcon σ αcoh κ

1 0.73 (0.46) 0.47 (0.14) 20.64 (19.35) 0.00 (0.00)

2
0.23 (0.37)
(p<0.010)

0.32 (0.18)
(p=0.004)

5.68 (18.19) 1.30 (1.85)

3
1.31 (1.65)
(p<0.001)

0.50 (0.02) 1.77 (3.82) 2.04 (1.55)

4 0.56 (0.45)
0.26 (0.20)
(p<0.001)

6.81 (15.88) 1.19 (5.85)

5 0.64 (0.92) 0.50 (0.07) 15.81 (22.26)
2.66 (5.01)
(p=0.005)

6 0.66 (0.23) 0.47 (0.25)
-12.93 (11.24)
(p<0.001)

3.82 (7.77)
(p<0.002)

7 0.42 (0.18)
0.56 (0.20)
(p=0.040)

3.88 (9.76) 0.56 (0.80)

8 0.40 (0.43) 0.44 (0.10)
34.68 (28.94)
(p<0.001)

0.03 (0.29)

9 0.45 (0.32)
0.58 (0.18)
(p=0.014)

12.60 (20.76) 0.11 (0.82)

10 0.52 (0.31) 0.39 (0.16) 7.12 (9.65) 0.77 (1.02)

11 0.61 (0.18)
0.56 (0.20)
(p=0.016)

28.44 (28.99)
(p<0.001)

0.02 (0.02)

Table 2.3: Variability in population response function parameter estimates across observers

The population response model was able to capture the majority of variance in each observers

event-related responses and a significant portion of this explained variance was accounted for by

the population response functions. We assessed variance explained as the squared correlation be-

tween the model predictions and the actual event-related responses for held-out conditions. For V1,

r2=0.69, 95% CI [0.63 0.75]; V2, r2=0.63, 95% CI [0.58 0.68]; V3, r2=0.62, 95% CI [0.56 0.68]; hV4,

r2=0.44, 95% CI [0.35 0.53]; V3A, r2=0.42, 95% CI [0.35 0.50]; V3B, r2=0.38, 95% CI [0.31 0.46];

V7, r2=0.32, 95% CI [0.24 0.40]; MT, r2=0.49, 95% CI [0.43 0.56]. Part of the variance accounted

for by the model is simply due to the stimulus-onset term and hemodynamic response, but the

population response functions also captured significant variance. We assessed this by comparing our

results to a model fit to the same measurements but where the condition labels were permuted. This

corresponds to keeping the variance explained by stimulus onset and the hemodynamic response but

randomizes the relationship between condition and response. We repeated this permutation test

procedure 100 times per observer and cortical area. On average across observers and areas the

variance explained by fitting to the measured data set (average cross-validated r2=0.508) exceeded

the variance explained in the permuted data set (average cross-validated r2=0.340) with p < 0.001,

∆r2=0.164, 95% CI [0.162, 0.165].

Across cortical visual areas the model captured the response to changes in contrast and motion

coherence as well as the amplitude effects due to duration. To visualize the fit of the population

model to each variable we scaled the canonical hemodynamic response function for each observer

to fit the event-related responses in the conditions with either no change in contrast or no change

in coherence. This results in a single scaling factor for each of these conditions (circles, Fig. 2.5)

which we compared with the model predictions (lines, Fig. 2.5). Examination of the magnitude

of the population model fit to the event-related response peaks for changes in contrast (orange
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curves, Fig. 2.5A) and coherence (blue curves) shows good correspondence. This is particularly

notable given that the model is fit across all conditions containing different response lengths, as

well as combinations of contrast and coherence changes, while the displayed data are for changes in

contrast and coherence in isolation. This visualization displays a model fit to all the data, i.e., not on

held-out data, but with similar explained variance to the cross-validated model (difference between

cross-validated and full fit, ∆r2 ==0.005, 95% CI [0.004 0.006]). The population response functions

echoed the qualitative results described above for the event-related responses: V1, V2, V3, and hV4

showed strong response to contrast with relatively weak response to coherence. Only MT showed

stronger response to motion coherence than to contrast. Moreover, the amplitude of responses as

a function of duration (Fig. 2.5B) were similarly well captured by the population response model.

As noted earlier the amplitude of responses due to doubling in duration do not appear to scale in a

linear manner.

The form of the contrast response function has been extensively studied (Albrecht & Hamilton,

1982; Boynton et al., 1999; Sclar et al., 1990) while the motion coherence response function has

received much less attention. Single-unit studies have found a linear response function, whereas

BOLD measurements in humans have found some non-linearity of response, particularly outside of

MT (Rees et al., 2000). We therefore tested for non-linearity in the population response functions to

motion coherence and found that responses were generally best characterized as linear, with a small

deviation from linearity for MT. We quantified this comparison as the difference in cross-validated

variance explained between the saturating exponential and a linear form for the coherence response

function. In MT we found a small difference in favor of the nonlinear model r2=0.004 (95% CI

[0.001 0.007]) while all other cortical areas confidence intervals overlapped with zero. This difference

is visible as the saturation of the MT coherence response to large changes in coherence (Fig. 2.2B

and Fig. 2.5A, MT).

While population responses to each motion feature could interact, i.e., a change in contrast

might influence the response to a change in coherence or vice versa, we found no evidence for

this. We tested for interactions by adding an additional beta weight to the model accounting

for the effect of multiplicative changes in contrast and coherence (see methods section Population

responses: functional forms). Including this term reduced the cross-validated variance explained

by on average 6.67% (95% CI [13.42, 0.08]) across cortical areas, suggesting overfitting compared

with the no-interaction model. One observers data was particularly strongly overfit. Removing that

observer resulted in an average reduction in variance explained of 0.08% (95% CI [0.25 0.09]) and

for individual areas, V1: 0.18%, V2: 0.16, V3: 0.17, hV4: 0.13, V3A: 0.07, V3B: 0.14, V7: 0.07,

MT: 0.11.

Visual inspection of the response grids (bottom left panels in Fig. 2.2 and 2.3) suggest an

alternative kind of interaction in which the response to contrast and coherence might be stronger in

the absence of the other feature changing. Take for example the response to contrast compared with
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Figure 2.5: Population response functions. A: the population response functions fit to each cortical
area V1-MT (hMT+) are shown compared with the magnitude of the event-related response for the
conditions in which only one feature changed. These correspond to the conditions in the first column
and last row of each event-related response grid in Figs. 2 and 3. To make the functions comparable
to the data in an easy to interpret space we reduced each event-related response to a single magnitude
value which was obtained by finding the linear scaling of the canonical hemodynamic response to
that condition. The model outputs predictions for all 40 conditions but we are only showing the
subset where either contrast or coherence changed alone. Note that the predictions here are not out
of sample (i.e., these are not the cross-validation results) but we show the full fit to better visualize
the response functions. B: as in A but for the variable duration conditions in which contrast and
coherence changed maximally (+75% contrast, +100% coherence). In all plots markers indicate the
average across observers and error bars the bootstrapped 95% confidence interval.
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coherence in V1. The contrast response in V1 is so much larger than the response to coherence that its

possible it “washes out” any visible effect due to coherence. To test for this possibility we fit a model

with different population response functions for conditions in which only a single feature changed

vs. when both features changed. We found that these models were also not statistically better than

the simplest model with no interactions: average reduction in cross-validated variance explained

5.34% 95% CI [9.13, 1.56] and without the overfit observer 0.20% 95% CI [0.31, 0.08]. Although

statistically the models were similar in our data set we did find that in the interaction model the

population response functions to contrast had a higher maximal response when the coherence was not

simultaneously changed, but the reverse was not true. On average across subjects and cortical areas

we found an increase in sensitivity of 50% in the contrast response when no simultaneous change in

coherence occurred (average parameter change 1.68 95% CI [0.58, 2.78], significantly different from

zero as assessed by bootstrap over observers, P = 0.007).

The population response model fits (Fig. 2.5) replicate earlier reports showing that contrast

responses have a smaller dynamic range and saturate more quickly in higher visual cortical areas

(Avidan et al., 2002), and add the finding that coherence sensitivity peaks in MT. To assess this

we plotted the maximum of the contrast response function (the contrast parameter) against the

linear slope of the coherence response function (the response range measured as the slope of a linear

fit, see methods) for each cortical area (Fig. 2.6A). As expected we found stronger sensitivity to

motion coherence in V3A and MT compared with area V1 (Dupont et al., 1994; Tootell et al.,

1998a; Watson et al., 1993; Zeki et al., 1991). The difference in coherence sensitivity between V3A

and V1 was 0.167, P ¡ 0.001 and between MT and V1 0.251, P ¡ 0.001. But we also observed

significant sensitivity to changes in coherence in all regions measured (Fig. 2.6B): V1 = 0.12, V2 =

0.19, V3 = 0.18, hV4 = 0.13, V3A = 0.25, V3B = 0.15, V7 = 0.22, MT = 0.36, slopes in % signal

change/unit coherence, all P ¡ 0.001 assessed by bootstrap across observers. All cortical visual areas

showed statistically significant parametric sensitivity to changes in contrast (Fig. 6C) assessed as

a nonzero αcon parameter by bootstrap across observers, all P ¡ 0.001 except MT, P = 0.002. The

maximum contrast response dropped quickly for regions higher in the visual hierarchy (V1 = 2.00,

V2 = 0.87, V3 = 0.68, hV4 = 0.63, V3A = 0.35, V3B = 0.24, V7 = 0.33, MT = 0.20, units in %

signal change/unit contrast).

Although we fit a Naka-Rushton function to the contrast response our measurements were limited

to only a few points (no change in contrast, +25, +50, and +75%). This meant that the data did not

strongly constrain a sigmoidal fit. We assessed whether in our data set the results would be equally

well fit by a linear model and found that this was the case for all areas except V7, with an average

improvement of 0.32% in cross-validated variance explained. Therefore, the contrast parameter

which fits the maximal response to contrast in each region tracks the slope of the relationship

between contrast and response and can therefore be used as a measure of the sensitivity to contrast,

in the range of contrasts we measured. The linear models improvement in variance explained for
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Figure 2.6: Cortical sensitivity to contrast and motion coherence. A: to obtain a qualitative estimate
of cortical sensitivity to each motion visibility feature across the cortical visual areas we plotted the
contrast parameter from the Naka-Rushton function against the slope of a linear fit of the coherence
functions. B: the slope of the coherence functions fits as in A replotted with individual subjects.
C: the contrast parameter as in A replotted with individual subjects shown for each cortical area.
D: we plot the ratio of the sensitivity parameters as an unbiased additional comparison because the
amplitude parameters could be sensitive to the signal-to-noise ratio of the measurement in different
cortical areas. Note that for some subjects the slope of the coherence response was near zero in
some cortical areas, we note these as a ratio of infinity (Inf). The means are calculated excluding
infinite values. E: the stimulus-onset response parameter Ronset indexes the portion of the response
that was not parametrically modulated by contrast or coherence. F: for each doubling in stimulus
duration the proportion of response increase is shown by cortical area where 100% would indicate that
responses increased linearly with duration. In all panels markers indicate the mean and error bars
the bootstrapped 95% confidence interval. Error bars are omitted in panels (BE) for visualization.
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individual areas were V1 0.66, 95% CI [0.16 1.15]; V2 0.79, 95% CI [0.14 1.45]; V3 0.51, 95% CI

[0.04 0.98]; V4 0.27, 95% CI [0.09 0.45]; V3a 0.24, 95% CI [0.06 0.42]; V3b 0.17, 95% CI [0.03 0.31];

V7 0.04, 95% CI [0.14 0.06]; MT 0.21, 95% CI [0.07 0.34].

We found that the variability in our measurements did not differ significantly across different cor-

tical areas or according to the stimulus strength. We performed this analysis to test whether various

nuisance variables could have altered our measurements, e.g., proximity to the coils and partial vo-

luming might affect signal-to-noise in different cortical areas, or the variability in our measurements

might increase with response magnitude as contrast and coherence cause populations of neurons to

be more active. To do this we estimated the response magnitude of every trial and grouped these

by condition and cortical area, then fit a series of linear models to see whether variability differed.

We found that none of the additional variables improved the model fit over the intercept-only model

at the p = 0.05 significance threshold. Importantly, the model that allowed separate values for each

cortical area did not improve the model fit, suggesting that response variability did not significantly

differ between cortical areas (mean cortical area standard deviation was 1.50 percent signal change;

V1 1.75, 95% CI [1.33 2.17]; V2 1.08, 95% CI [0.91 1.25]; V3 1.28, 95% CI [1.06 1.49]; V4 1.37, 95%

CI [1.03 1.72]; V3a 5.71, 95% CI [1.28 10.15]; V3b 1.14, 95% CI [0.96 1.31]; V7 1.32, 95% CI [0.97

1.66]; MT 1.30, 95% CI [0.95 1.66]). In addition we found that there was no statistically significant

change in variability in the slope of the relationship between variability and stimulus strength (even

when separate slopes were allowed for different cortical areas), suggesting that noise in our measure-

ments was additive, i.e., did not increase with increasing response magnitude. Fitting the model

with a slope for contrast and coherence (shared across areas) results in a slope of 1.23 percent signal

change per unit contrast, t(2,557) = 1.27, P = 0.21, and a slope of 0.58 percent signal change per

unit coherence, t(2,557) = 0.78, P = 0.44.

Although our measurements do not suggest that any bias is introduced by potential signal-to-

noise differences across areas, we computed the ratio of the contrast and coherence slope parameters

as an additional unbiased analysis (Fig. 6D). This ratio allows for between region comparison of

the sensitivity to contrast and coherence because the ratio reports how sensitive each region is to

contrast compared with coherence and not overall sensitivity. That is, the ratio should be invariant

to differences in signal-to-noise, under the assumption that contrast and coherence sensitivity are

equally affected. In line with our previous results we found that V1 has a ratio of contrast to

coherence sensitivity that is at least an order of magnitude more than the other areas. In addition

MT was found to have a ratio near 1 and lower than the other cortical areas, reflecting its stronger

relative sensitivity to coherence.

We found that the portion of the BOLD response that did not vary parametrically with contrast

or coherence, the stimulus-onset response Ronset did vary across cortical areas (Fig. 6E and Table

1). On average the onset response was 0.23 percent signal change across observers and cortical areas.

The stimulus-onset response in V1 and V3 were larger than average at 0.42 percent signal change,
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95% CI [0.28, 0.55], while areas V3A, V3B, and V7 were smaller than average, 0.14, 95% CI [0.07,

0.20]; 0.15, 95% CI 0.11, 0.18]; 0.09, 95% CI [0.06, 0.13], respectively. The other cortical areas onset

effects were V2 0.28, 95% CI [0.19, 0.37]; V3 0.22, 95% CI [0.22 0.36]; V4 0.23, 95% CI [0.15, 0.31];

MT 0.24, 95% CI [0.19, 0.29].

Finally, we found that the effect of increasing stimulus duration was not consistent across cortical

areas (Fig. 2.6F). We found that early visual cortex, V1 in particular, was significantly more sensitive

to changes in duration than later visual areas, especially MT. The effect of a doubling in duration

on the population response, as a proportion of that expected from a linear model, was 68.56%. On

average across subjects we found that V1 and MT differed significantly from the average. We found

that the effect of a doubling in duration in V1 was 83% of the linear model, 95% CI [76.00, 92.27],

suggesting that V1 is more sensitive to stimulus duration. By contrast in MT the effect was only

62% of the linear model, 95% CI [57.06, 66.08], suggesting that MT may have a more transient

response. The effects in other areas were not significantly different from the average: V2 73%, 95%

CI [67.20, 79.70]; V3 70%, 95% CI [65.05, 74.95]; V4 70%, 95% CI [64.21, 76.59]; V3A 67%, 95% CI

[61.24, 73.31]; V3B 64%, 95% CI [60.45, 67.64]; V7 64%, 95% CI [58.07, 70.02].

2.4 Discussion

We have developed a quantitative framework for modeling human cortical response to motion vis-

ibility as parameterized by image contrast, motion coherence, and duration. Our results provide

a comprehensive view of the variability in cortical sensitivity to these features, each of which is a

critical component of visual stimuli often manipulated in experiments designed to understand visual

perception and decision-making. Our measurements show that the range of responses to different

levels of contrast was larger in early visual cortex, especially V1, and the range of responses for

coherence larger in V3A and MT (hMT+). Nonetheless, a change in either feature caused a cortical

response in all the retinotopic areas we mapped. Our results weigh on various other findings in the

literature: the precise shape of population response functions, the influence of stimulus duration on

cortical signals, and whether or not sensory representations for different features interact. Finally,

we believe that this parameterized model, and parametric models in general, suggest mechanisms

for the read out of sensory representations from population responses and have therefore made our

measurements and framework available online as a resource (see methods).

We studied changes in contrast, coherence, and duration to measure human cortical response

within a range where typical human perceptual experiments are performed. One choice we made was

to measure contrast from a relatively high baseline. Because the contrast response function is known

to adapt to the current background stimulus without altering the form of parametric modulation

(Ohzawa, Sclar, & Freeman, 1982, 1985; Sclar, Ohzawa, & Freeman, 1985; Sclar, Lennie, & DePriest,

1989; Gardner et al., 2005) the relative sensitivities we measured should hold at other baselines. With
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this design we were also able to show that sensitivity to changes in contrast and coherence do not

interact. The interaction analysis would be impossible in stimuli where the dots appear from a

black or gray background such that both contrast and coherence always change together (Britten

et al., 1993; Rees et al., 2000). When designing the dot motion stimulus we also had to ensure that

there were sufficient dots and a large enough aperture to be clearly visible and generate a reliable

coherence response. At low dot densities the response to changes in coherence are negligible (Smith,

Wall, Williams, & Singh, 2006) and small aperture sizes can cause changes in coherence to result in

decrements in response (Ajina et al., 2015; Becker, Erb, & Haarmeier, 2008; Costagli et al., 2014).

By creating a large stimulus with high density we guaranteed that our dot motion would blanket

the population receptive fields of all the cortical areas measured.

We set our stimulus to move at a constant rate of 6◦/s, within the peak range of speed tuning in

visual cortex, and used a dot stimulus rather than gratings to avoid having spatial frequency tuning

affect our measurements. Although individual V1 and MT neurons in the macaque differ greatly in

their speed tuning the average tuning of the population is quite similar and centered near 6◦/s with

ranges that extend far above and below that (Priebe, Lisberger, & Movshon, 2006). Measurements

of speed tuning in humans evidence broad variability across all of visual cortex but our chosen

speed is within the peak range (Singh, Smith, & Greenlee, 2000; Hammett, Smith, Wall, & Larsson,

2013). One common concern with speed tuning in gratings is that spatial frequency tuning differs

across cortex and directly impacts sensitivity to other stimulus properties, such as image contrast

(Priebe, Cassanello, & Lisberger, 2003; Priebe et al., 2006). We used a random dot stimulus with

a wide range of spatial frequency components rather than gratings with a specific spatial frequency

to avoid this confound. In principle our stimulus drives neurons with a wide range of tunings and

by averaging over voxels in each cortical area we reduce the impact of columnar and other local

microstructure in each area (Sun et al., 2007; Liu & Newsome, 2002).

We reported here several parameters which together defined the population response functions,

but which of these represents a good measure of the sensitivity of a region? We use the term sensitiv-

ity to capture parametric differences in response magnitude with differences in contrast or coherence.

Thus, an area with high contrast or coherence sensitivity is one in which the response to the lowest

and highest values of these parameters evoke the largest difference in response (see methods for how

the reported parameters correspond to this). This measure can be used to compare with human be-

havioral contrast or coherence discrimination performance since signal detection theory predicts that

perceptual sensitivity, d, is directly proportional to this difference (Boynton et al., 1999; Newsome

et al., 1989; Pestilli et al., 2011; Tolhurst, Movshon, & Dean, 1983; Zenger-Landolt & Heeger, 2003).

However, d is also inversely proportional to the standard deviation of response which could vary

across different areas, particularly for measurement related reasons that would therefore distort our

measures of sensitivity. Our analysis of the variability of response across different areas did not find

differences, thus suggesting that our measures are an accurate reflection of contrast and coherence
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sensitivity. Moreover, we used a selection criterion to analyze a subset of voxels that show consistent

trial-to-trial responses to reduce the effect of measurement noise but our parametrization will still

be sensitive to any noise that remains.

Response variability might also change with response amplitude as it is known to do for single-unit

responses. Although occasionally single neurons can be found that match perception (Britten et al.,

1992), groups of neurons (Tolhurst et al., 1983) or larger populations (Averbeck, Latham, & Pouget,

2006; Zohary, Shadlen, & Newsome, 1994), depending on the correlation structure in the population,

are likely to more closely reflect perceptual reports. Supporting the idea that populations are used

for perceptual readout is evidence from human work where at the coarse resolution of the BOLD

signal, which pools over large numbers of neurons, cortical measurements closely track perception

under an assumption of additive noise (Boynton et al., 1999; Hara & Gardner, 2014; Pestilli et

al., 2011; Sapir, d’Avossa, McAvoy, Shulman, & Corbetta, 2005). In line with this the variance

of population responses measured with voltage-sensitive dyes do not change with magnitude of

response in V1, i.e., they are additive (Chen, Geisler, & Seidemann, 2006). Our own measurements

support the hypothesis that populations are subject to additive noise: we found that as contrast

and coherence increased and caused larger magnitudes of response we found no evidence that trial-

by-trial variability changed. Together our data and previous results suggest that measures of the

slope in the BOLD signal population response function are indeed measures of sensitivity and leaves

us with a testable prediction: if parameters measure sensitivity (i.e., signal-to-noise ratio) then

they should be relatable to human perception under additive noise but not noise which scales with

response magnitude.

We observed a saturation of the cortical response to motion coherence that differs from recordings

of a linear response in MT in human (Händel et al., 2007; Rees et al., 2000) and monkey (Britten et

al., 1993). Saturation of the contrast response function is thought to be the result of normalization,

a canonical computation in cortex (Baker & Wade, 2017; Carandini & Heeger, 2011). If the response

to motion coherence is linear, it might suggest that similar normalization does not apply. In fact,

models of the V1 to MT circuitry include explicit normalization (Simoncelli & Heeger, 1998) and

the normalization strength alters whether the model predicts linear or saturating responses. This

may account for the discrepancies of results; i.e., normalization may result in weak saturation of

coherence response as we have found, in line with evidence from both humans (Costagli et al., 2014;

Rees et al., 2000) and monkeys (Britten et al., 1993). In support of this idea is evidence that in the

absence of a normal input from V1 the coherence response function in MT becomes more linear,

possibly reflecting an increased input from subcortical regions whose coherence response is linear

(Ajina et al., 2015). To clarify this we can again turn to behavior. Because the MT response has been

linked to behavior (Katz et al., 2016) our model makes a testable prediction: under the assumption

that the visual system performs signal detection subject to additive noise (Boynton et al., 1999) a

saturating coherence function would predict worse discriminability of coherence at higher base levels
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of coherence.

To build out our quantitative framework we measured responses to stimuli of varying durations,

down to those typically used in psychophysical experiments (e.g., 0.25 s) as well as at durations

more typically used for BOLD measurement (e.g., 4 s). Our results confirm many previous results

showing that there exists a nonlinearity in the BOLD response, such that shorter stimuli have a

larger response than expected by temporal linearity (Boynton et al., 1996; Boynton et al., 2012).

Modeling our responses, we found that on average across cortical areas a doubling of the stimulus

duration was associated with an increase in response of only 67% of the expectation of a linear

model. Whether or not this is due to neural adaptation (Buxton et al., 2004) or saturation of the

BOLD signal (Friston et al., 1998) cannot be determined from our data. We also observed a slight

difference in the duration effect across cortical areas. In V1 increasing duration results in a larger

effect on the population response whereas MT showed a smaller than average response, which could

be a result of the more transient response in MT (Stigliani et al., 2017).

We also noted that any change in the stimulus, regardless of the type, amplitude, or duration

resulted in what we refer to as a stimulus-onset response in all cortical areas. What is the nature of

this response? Early recordings comparing BOLD responses to electrophysiological recording suggest

that the BOLD signal may be thresholded at some minimum response even though neural activity

continues to be modulated below that threshold (Logothetis et al., 2001). Another possibility is that

the stimulus-onset response may be the result of a consistent trial structure causing anticipatory

responses (Cardoso, Sirotin, Lima, Glushenkova, & Das, 2012). In the latter case fitting a separate

stimulus onset parameter to absorb this trial-structure related variance is appropriate to correctly

estimate the population response from the BOLD signal.

Our approach to making a parametric model of cortical response to motion visibility contrasts

with more complex models, such as Gabor wavelet pyramids and deep convolutional networks (Kay,

Naselaris, Prenger, & Gallant, 2008; Kay & Yeatman, 2017; Yamins et al., 2014) that are typically

image-computable and thus can make detailed predictions of cortical response properties directly

from images. A complete image-computable model would implicitly contain our parametric model

within it and seemingly obviate the need to parameterize stimulus visibility and its relationship to

cortical response. Building such complex models is a worthy goal, however, we would note that much

success in understanding visual cortex function has come from experiments which parametrically

altered visual features, in particular features related to visibility. Consider the result of stimulus

combination. When two gratings with different luminance contrast are presented the evoked response

is not well captured by simple rules such as linear summation or winner-take-all (Busse, Wade, &

Carandini, 2009). Instead, across a large range of parameter combinations the evoked response is

well explained by normalization (Carandini & Heeger, 2011). The canonical rule that an evoked

response should be scaled by the response of a neighboring region of cortex is easily understood in a

parametric model, but far less intuitive in a complex one. Another low-dimensional parametric model
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is the population receptive field (Dumoulin & Wandell, 2008; Wandell & Winawer, 2015), which has

been widely used to map and interpret the properties of retinotopic visual cortex, largely because

of its simplicity. In general, low-dimensional quantitative frameworks like the one we have built can

parameterize cortical response to key stimulus properties and by doing so, serve to make testable

predictions for perceptual function. For example, our framework suggests that small variation in

sensitivity across cortical areas might be used to separately determine the visibility of motion for

different parameters. That is, a read-out of the visual representations could take advantage of the

differences in feature sensitivity by differentially weighting V1 and MT for contrast discrimination

and vice versa for coherence discrimination.

Each parameter of motion visibility that we studied has been separately used to uncover the

neural basis of different aspects of perception and perceptual decision making. The quantitative

framework that we have proposed here shows that despite their similar effects on perception, contrast,

coherence, and duration have distinct cortical representation at the level of populations. In studies

of perception, the effects of these parameters on cortical response should not be considered to be

interchangeable. With our reference framework one can now make changes in one parameter or the

other and predict how this will affect human cortical response. In this way our predictive model is

a key tool in furthering the goal of linking cortical response to perceptual behavior.



Chapter 3

Aim 1: A flexible readout

mechanism of human sensory

representations

3.1 Introduction

Humans can flexibly attend to different aspects of the environment when their goals require it. This

can be operationalized by asking human observers to report about one feature of a visual stimulus

while ignoring other features. Such context-dependent judgments could be supported by a cortical

implementation which increases sensitivity or selectivity for the sensory representations of reported

features while suppressing others. A second and potentially complimentary implementation is to

maintain stable sensory representations while flexibly changing the downstream readout of these.

A great deal of evidence exists for the former possibility of changing representations to accommo-

date behavioral demands. Behavioral manipulations of spatial attention (Klein et al., 2014; Mitchell

et al., 2009; Pestilli et al., 2011; Womelsdorf et al., 2006), feature-based attention (Baldauf & Desi-

mone, 2014; Harel et al., 2014; Huk & Heeger, 2000; Jehee et al., 2011; Serences & Boynton, 2007;

Cohen & Tong, 2013; Treue & Mart́ınez Trujillo, 1999), and stimulus expectations (Kok, Jehee,

& de Lange, 2012; Kok, Brouwer, van Gerven, & de Lange, 2013) all have been associated with

changes in sensory representations. These changes may occur very early in the visual hierarchy

(Ling, Pratte, & Tong, 2015) and take the form of changes in sensitivity (Reynolds et al., 2000;

Serences & Boynton, 2007; Snyder et al., 2018; Treue & Mart́ınez Trujillo, 1999), shifts in feature

selectivity (Çukur et al., 2013; David et al., 2008; Kastner et al., 1998; Klein et al., 2014; Spitzer

et al., 1988; Womelsdorf et al., 2006; Womelsdorf et al., 2008), increases in baseline response (Bura-

cas & Boynton, 2007; Chen, Palmer, & Seidemann, 2012; Kastner et al., 1999; Ress et al., 2000; Li

41
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et al., 2008; Murray, 2008) useful for efficient selection (Hara et al., 2014; Pestilli et al., 2011), and

changes in the structure of stimulus-driven and noise correlations (Cohen & Maunsell, 2010, 2011;

Mitchell et al., 2009; Ruff & Cohen, 2016; Verhoef & Maunsell, 2017).

However, flexible readout rather than change in sensory representation can be a behaviorally

advantageous implementation of task demands. Although changing sensory representations can

be beneficial, there cans be associated behavioral costs to suppressing ignored features in sensory

representations (Gazzaley, Cooney, McEvoy, Knight, & D’esposito, 2005; Mesgarani & Chang, 2012;

Rees et al., 1997) when these are actually relevant to behavior. In many dramatic demonstrations

(Haines, 1991; Mack & Rock, 1998; Neisser, 1979; Simons & Chabris, 1999) observers have been

made blind to salient events when reporting about other aspects of a visual scene. This suggests a

potential advantage to maintaining stable sensory representations and using flexible sensory readouts

to enable adaptable behavior (Bugatus, Weiner, & Grill-Spector, 2017; Mante, Sussillo, Shenoy, &

Newsome, 2013; Peelen et al., 2009).

Finding changes in sensory representations across different task conditions is not enough to

demonstrate that these changes are large enough to explain perceptual behavior. Instead, linking

models are needed. Quantitative linking models (Barlow, 1972; Brindley, 1970; Cohen & Maunsell,

2010; Cook & Maunsell, 2002; Newsome et al., 1989; Pestilli et al., 2011; Teller, 1984; Hara &

Gardner, 2014) connect measurements of cortical activity to behavior by modeling the presumed

process by which sensory activity gives rise to perceptual behavior. Such linking models are explicit

hypotheses that can be falsified if they are unable to quantitatively link sensory representational

changes to behavioral performance across different task conditions.

Here we used a linking model to study human reports of motion visibility and to understand

whether sensory change or flexible readout implement this behavior. We first established that

observers could independently report about either the contrast (luminance difference between dark

and bright dots) or motion coherence (percentage of dots moving in a coherent direction) of random

dot patches while ignoring the other feature. We then extended a well-established linking model

of human contrast perception (Boynton et al., 1999; Foley & Legge, 1981; Gardner, 2015; Ling &

Carrasco, 2006; Nachmias & Sansbury, 1974; Pestilli, Ling, & Carrasco, 2009; Pestilli et al., 2011)

to account for behavioral performance during these tasks. Because in individual cortical areas the

response to motion visibility is mixed, we allowed the model to weight retinotopic areas according

to their sensitivity to the two features. The critical step to understand behavioral flexibility was to

measure BOLD signal while observers performed each discrimination task. If sensory representations

changed enough, then a linking model with a fixed readout of sensory areas should account for

behavior (i.e. that used the same weighting of cortical responses for both tasks). Implementing such

a fixed readout model showed that sensory changes alone were insufficient in magnitude to explain

perception. Instead, in addition to the sensory change, a change in readout between different task

conditions was necessary (i.e. a flexible readout). A benefit of flexible readouts is that sensory
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representations can retain information about the unattended feature. In line with this, we show

that observers can re-map their reports unexpectedly.

3.2 Methods

3.2.1 Observers

In total 29 observers were subjects for the experiments. All observers except one (who was an

author) were naive to the intent of the experiments. Eight observers were excluded during initial

training sessions due to inability to maintain appropriate fixation (see eye-tracking below). All of the

remaining 21 observers (13 female, 8 male; mean age 28 y; age range 18-55) performed the motion

visibility behavioral experiment outside of the scanner. Observers performed up to six one-hour

sessions on separate days for an average of 2467 trials each (range 1167-3652, standard deviation

497). Ten of the observers (7 female, 3 male; mean age 26 y; age range 19-36) repeated the motion

visibility experiment inside the scanner. Observers were scanned in two 90-minute sessions, each

consisting of eight 7-minute runs, and a third one-hour scan which included retinotopy and anatom-

ical images. Procedures were approved in advance by the Stanford Institutional Review Board on

human participants research and all observers gave prior written informed consent. Observers wore

corrective lenses to correct their vision to normal when necessary.

3.2.2 Hardware setup for stimulus and task control

Visual stimuli were generated using MATLAB (The Mathworks, Inc.) and MGL (Gardner et al.,

2018a). During scanning, stimuli were displayed via an Eiki LC-WUL100L projector (resolution of

1920x1080, refresh-rate of 100 Hz) on an acrylic sheet mounted inside the scanner bore near the

head coil. Visual stimuli were viewed through a mirror mounted on the head coil and responses

were collected via an MRI-compatible button box. Outside the scanner, stimuli were displayed on

a 22.5 inch VIEWPixx LCD display (resolution of 1900x1200, refresh-rate of 120 Hz) and responses

collected via keyboard. Output luminance was measured for both the projector and the LCD

display with a PR650 spectrometer (Photo Research, Inc.). The gamma table for each display was

dynamically adjusted at the beginning of each trial to linearize the luminance display such that

the full resolution of the 8-bit table could be used to display the maximum contrast needed. Other

sources of light were minimized during behavior and scanning.

3.2.3 Eye tracking

Eye-tracking was performed using an infrared video-based eye-tracker at 500 Hz (Eyelink 1000; SR

Research). Calibration was performed throughout each session to maintain a validation accuracy of

less than 1 deg average offset from expected using either a ten-point or thirteen-point calibration
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procedure. Trials were canceled on-line when an observers eye position moved more than 1.5 deg

away from the center of the fixation cross for more than 300 ms. During training and before data

collection, observers were excluded from further participation if we were unable to calibrate the eye

tracker to an error of less than 1 deg of visual angle or if their canceled trial rate did not drop to

near zero. After training canceled trials consisted of fewer than 0.1% of all trials. Due to technical

limitations eye tracking was not performed inside the scanner.

3.2.4 Experimental design

Stimulus

Motion stimuli consisted of two patches of random dot stimuli flanking a central fixation cross (1

x 1 deg). The random dot stimulus patches were rectangular regions extending from 3.5 to 12

deg horizontal and -7 to 7 deg vertical on either side of the fixation cross. Each patch was filled

with 21 dots / deg2, 50% brighter and 50% darker than the gray background (300 cd / m2 in the

scanner and 46 cd / m2 during behavior. All dots moved at 6 deg / s updated on each video frame.

Motion strength was adjusted by changing motion coherence: the percentage of dots that moved in a

common direction with all other dots moving in random directions. Dots were randomly reassigned

on each video frame to be moving in the coherent or random directions. Both patches maintained a

constant baseline in between trials of 25% contrast and incoherent motion. To minimize involuntary

eye movements, the coherent dot motion direction was randomized to be horizontally inward or

outward from fixation on each trial, such that the two patches moved in opposite directions.

Contrast and coherence tasks

Observers performed a two-alternative forced choice judgment about the visibility of the two dot

patches (Fig. 3.1). At the start of each run observers were shown the word contrast or motion

cueing them to report which side had the higher contrast or motion coherence, respectively. Each

run began with a 5 s baseline period during behavioral measurements or 30 s during scanning (25%

contrast, 0% coherence) to allow time for adaptation to occur. Trials consisted of a 0.5 s increment

in either or both the contrast and motion coherence of the dot patches, a variable delay of 0.5

- 1 s, and a response period of 1s. The dot patches then returned to baseline for an inter-trial

interval of 0.2 to 0.4 s randomly sampled from a uniform distribution (2 to 11 s, sampled from an

exponential distribution during scanning). The base stimulus strength increments were chosen to be

+7.5, +15, +30, and +60% contrast above the baseline 25% contrast and +15, +30, +45, and +60%

coherence above the baseline 0% coherence. On every trial one dot patch was chosen as the target

for contrast and incremented by an additional small delta, and the same was done independently

for coherence. The target increment for the uncued feature was randomly chosen from [0.0, 1.8,

2.5, 3.5, 4.9, 6.9, 9.5, 13.3, 18.5%] for contrast and [0.0, 5.0, 6.9, 9.6, 13.4, 18.6, 25.9, 36.1, 50.2%]
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for coherence. The relevant target increment was chosen by a PEST staircase (Taylor & Creelman,

1967) to maintain 82% correct on the cued task for each base strength (4 base strengths × 2 task

conditions = 8 total staircases). Observers indicated with a button press which side contained the

delta increment of the cued feature. An observer would be at chance performance if they reported

on the wrong feature. Staircases were initialized on the first run (after training) at 25% and 85% for

contrast and coherence, respectively. The staircases were maintained across sessions, but the step

size was reset to one third the threshold every third run to allow for long-term fluctuation. Before

data collection observers trained on the task until their performance at all base stimulus strengths

was measurable (i.e. their threshold converged to less than 1 minus the base strength), on average

one hour of training. Behavioral runs lasted four minutes and observers took breaks as needed.

Observers performed up to 6 one-hour sessions of behavioral runs spanning multiple days.

On a subset of the motion visibility experiment runs (two of every five runs) observers were

occasionally asked to report about the non-cued feature (trial probability 1/7, randomized). We

refer to these as catch trials. Stimulus presentation occurred as normal on catch trials but after

stimulus presentation and a fixed 0.5 s delay, a letter replaced the fixation cross to indicate that the

observer needed to recall and respond about the un-cued feature. The length of the delay periods in

both catch and regular trials (0.5 s and 0.5 - 1 s, respectively) were chosen to ensure observers could

not rely on iconic memory to complete the task (Sperling, 1960) and to avoid observers getting into

a rhythm and responding before the post-cue could appear. On contrast runs the post-cue letter

was an M indicating that observers should recall about motion coherence and on coherence runs a

C to indicate contrast. To improve our statistical power in estimating perceptual sensitivity during

catch runs we used a single base stimulus increment: +30% contrast and +40% coherence. These

base increments were used both for catch and regular trials on these runs.

3.2.5 Behavioral data analysis

To assess whether the perceptual data could be well characterized by a signal detection framework

we tested the fit of cumulative normal distributions to the measured psychometric functions. We

collapsed data from all observers across the four base stimulus strengths and separated trials in

which observers discriminated contrast or coherence. We binned data according to the difference in

stimulus strength for each task and computed the probability of making a rightward choice in each

bin (filled circles, Figure 3.2a, b). We fit the binned data with a cumulative normal distribution

(three parameters: the mean, µ, standard deviation, σ, and a lapse rate, λ which scaled the function

so that it spanned the range λ
2 to 1− λ

2 ) and evaluated the cross-validated fit on a held-out observer

using the pseudo r2:

r2pseudo = 1− log(Lmodel)
log(Lnull)

(3.1)
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where Lmodel is the likelihood of the model given the data and Lnull is the likelihood of an

intercept-only model.

Just-noticeable difference (threshold) estimation

To assess perceptual sensitivity we obtained just-noticeable differences (or thresholds) by fitting

a Weibull function (Wichmann & Hill, 2001) to each observers data using maximum likelihood

estimation:

Pcorrect(x) = γ + (1− γ − λ)(1− e−[ xτ ]
β

(3.2)

Where x is the difference in signal (either contrast or coherence) between dot patches, γ is the

guess rate, λ is the lapse rate, β controls the slope of the function, and τ the value of x at which

the function reaches 63% of its maximum. For this two-alternative forced choice task the guess rate

was 50% while threshold (when d
′

= 1) corresponds to 76% correct. In total we fit twelve Weibull

functions for each observer: eight for the contrast and coherence task (4 base strengths × 2 task

conditions), two for the cued tasks in catch runs (1 base strength × 2 tasks), and two for the catch

trials (1 base strength × 2 tasks).

3.2.6 Cortical measurement during task performance

We measured how contrast and coherence response functions changed in gain or offset compared to

passive fixation in different retinotopically defined cortical visual areas as ten observers performed

the contrast or the coherence discrimination task. Our general strategy was based on previous

work (Birman & Gardner, 2018) in which we have shown that the relationship between contrast

or coherence and BOLD response can be independently parameterized with functional forms, as

described below. The analysis proceeded in the following steps. We first used population receptive

field measurements (Dumoulin & Wandell, 2008) to determine the location of cortical visual areas

in each individual subject. We then took the time series of data averaged across each visual area

(for each hemisphere and subject) and performed an event-related analysis to compute the average

response to the stimulus presented in the contralateral visual field for each of the 16 combinations

of base contrast and coherence and 2 task conditions. We computed the amplitude of response by

fitting these event-related responses to a canonical hemodynamic response measured during passive

viewing. We had at least 42 measurements (21 repeats in 2 hemispheres) of each base stimulus

combination for each task condition in each subject. Consistent with our overall conclusion of

flexible readout, comparing these response magnitudes directly between conditions showed weak

if any change between conditions. The 95% confidence interval of the differences between tasks

included zero for almost all conditions (amplitudes were higher during the contrast task compared

the coherence task for 4/16 conditions, averaging over observers). This analysis does not separate out



CHAPTER 3. A FLEXIBLE READOUT MECHANISM 47

the independent effects of contrast and coherence across task conditions. So, to gain statistical power

and to establish how these BOLD responses reflect difference in contrast and coherence response

between task conditions, we used the response magnitudes to scale and shift by additive offset the

contrast and coherence response functions, originally based on data from passive viewing. These

6 parameter fits (2 gain parameters and 1 offset parameter for each of the 2 task conditions) were

based on 672 (16 base contrast and coherence conditions × 42 repeats) trial measurements which

provided sufficient statistical power and are reported in the main results. Note, for one subject

the contrast and coherence values in the conditions differed: only 12 out of 16 conditions were run

and with slightly different contrast and coherence values), we were still able to fit the population

response function models to this smaller dataset.

All BOLD imaging and data analysis procedures including imaging protocol, preprocessing, data

registration across sessions, retinotopic definition of visual areas using population receptive field mea-

surements, and extraction of mean time series from each visual area followed procedures described

in detail in Birman and Gardner (2018). Briefly, visual area mapping and cortical measurements

were obtained using a multiplexed sequence on a 3 Tesla GE Discovery MR750 (GE Medical Sys-

tems) with a Nova Medical 32ch head coil. Functional images were obtained using a whole-brain

T2*-weighted two-dimensional gradient-echo acquisition (FOV = 220mm, TR = 500 ms, TE = 30

ms, flip angle = 46 deg, 7 slices at multiplex 8 = 56 total slices, 2.5 mm isotropic). In addition, two

whole-brain high-resolution T1-weighted 3D BRAVO sequences were acquired (FOV=240mm, flip

angle=12 deg, 0.9 mm isotropic) and averaged to form a canonical anatomical image which was used

for segmentation, surface reconstruction, session-to-session alignment, and projection of data onto a

flattened cortical surface. Pre-processing was performed using mrTools (Gardner et al., 2018b) and

included linear trend removal, high pass filtering (cutoff of 0.01Hz), and motion correction with a

rigid body alignment using standard procedures (Gardner et al., 2008). Visual cortical areas V1-V4,

V3A/B, V7 (IPS0), and MT (hMT+) were identified using the population receptive field method

(Dumoulin & Wandell, 2008) and standard criteria (Wandell et al., 2007). Average time courses

were obtained for each cortical visual area by averaging the top twenty-five task-responsive voxels

per area. As documented in Birman and Gardner (2018), repeating the analysis using either all

voxels, the top two voxels, or all voxels weighted by their population receptive field overlap with

the stimulus results in a change in the signal-to-noise in the data, but did not change the relative

sensitivities across cortical areas.

To compute event-related responses we assumed that overlapping hemodynamic events sum lin-

early, an assumption that has been validated explicitly for visual responses (Boynton et al., 1996;

Dale & Buckner, 1997). We used a randomized inter-trial interval to avoid cognitive (Zarahn,

Aguirre, & D’Esposito, 1997) and hemodynamic (Sirotin & Das, 2009) anticipatory effects and to

increase the efficiency of our design (Dale et al., 1999; Liu & Frank, 2004). As violations of linearity

have been noted with shorter inter-trial intervals, we chose a mean inter-trial interval of 6 s, sampled
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from an exponential with a range of 2 to 11 s, intended to minimize the overlap in the main positive

lobe of the hemodynamic response between different events. Moreover, we used a balanced design

in which each trial was equally likely to be followed by a trial with any of the other base stimulus

strengths to minimize any systematic mis-estimation. We confirmed that the probability of each

condition being followed by any other was roughly equal, i.e. χ2(r, 15) > 0.05, where r was the test

statistic computed by comparing the distribution of trial types following each individual trial type

against a uniform distribution. No catch trials were run during scanning.

We computed event-related responses for each trial type using a finite-impulse response model

(Zarahn et al., 1997) following standard procedures (Gardner et al., 2005). We assumed each com-

bination of different base strengths for contrast and coherence evoked a different hemodynamic

response and responses that overlapped in time summed linearly. Because each visual stimulus was

lateralized in one half of the visual field, we assumed that they evoked a response only in contralat-

eral retinotopic areas. There were four base increments for contrast (+7.5, +15, +30, and +60%)

and four base increments for coherence (+15, +30, +45, and +60%) which were independently ma-

nipulated, resulting in 32 total conditions (4 contrast × 4 coherences × 2 task conditions). To model

these data, we used the following equation:

y = Xβ + ε (3.3)

Where y was an n×1 column vector (n = number of volumes) containing the measured hemody-

namic response for one hemifield of one visual area in a single observer. X was an n×(k×c) stimulus

convolution matrix (c = number of conditions, k = length in volumes of hemodynamic response to

calculate), β was a (k×c)×1 column vector to be estimated, and ε the residual variance (assumed to

be 0 mean Gaussian). Each block of k columns in X corresponded to one of the c conditions. These

blocks contained a one in the first column at the starting volume of each occurrence of a trial of

that condition and zeroes elsewhere. Each of the subsequent k columns was then shifted downwards

by one to form a Toeplitz matrix for that condition. In total X had n rows, equal to the length of

the BOLD timeseries (for most observers n was 13,184), and 2592 columns (k=81 × c=32, where k

was chosen to compute 40.5 s of response and the c conditions were the 4 contrast base strengths

× 4 coherence base strengths × 2 tasks). By computing the least-squares estimate of the column

vector β we obtained the estimated event-related response to each condition accounting linearly for

overlap in time. On every trial one dot patch was at a base strength and one had an additional

increment. To equate difficulty throughout the task we allowed the additional increments to vary

continuously via staircasing. To simplify the estimation problem and to improve statistical power we

rounded the base + increment values to the nearest base strength. The choice of number of volumes

of response k to compute did not change the result as long as it was sufficiently large to capture the

full hemodynamic response. The Pearsons correlation of the first 41 volumes between an analysis

with k=41 (20.5 s of response) and k=81 (40.5 s of response) was r=0.97. Because we randomized
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trial presentation, we assessed multicollinearity by checking that the stimulus convolution matrices

(see below) were full rank and that the off-diagonal elements of the covariance matrix were small

(less than 0.1% of off-diagonal elements were larger than 10% of the on-diagonal elements).

To obtain a response magnitude, we fit a scaled canonical hemodynamic response function mea-

sured during passive viewing to the event-related responses. We used a canonical hemodynamic

response function that was measured in previous work when observers passively viewed the same

stimulus (Birman & Gardner, 2018). This function took the form of a difference-of-gamma function

whose maximum amplitude was set to one. We fit a single magnitude per condition which scaled

this canonical function to minimize the sum of squared error between the event-related response

and the scaled canonical function. For each condition (4 contrast base strengths × 4 coherence base

strengths × 2 tasks) this gave us a scalar response amplitude for the evoked activity in each cortical

area.

The response magnitudes for each contrast, coherence, and task condition were next used to

estimate how population response functions for contrast and coherence in different visual areas

changed in gain and offset during task performance. In our previous work we parametrized the

population response to contrast as a sigmoid function (Albrecht & Hamilton, 1982; Naka & Rushton,

1966):

Rcon(scon) = αcon(
s1.9con

s1.6con + σ1.6
) (3.4)

Where α was the maximum amplitude and σ controlled the shape of the function. The exponents

in the function were chosen according to previous work (Boynton et al., 1999). The population

response function to coherence was parameterized to be a saturating nonlinear function:

Rcoh(scoh) = αcoh(1− e
scoh
κ ) (3.5)

Where the parameter κ controls the shape of the function by setting the point at which the

exponential function reaches 63% of its maximum and αcoh controls the amplitude. Large values of

αcoh combined with large values of κ make this function approach linear in the range [0 1] in which

the stimulus strength scoh is bounded. Because αcoh and κ are not interpretable on their own, we

instead report the linear slope of the coherence response functions as a measure of sensitivity (see

Birman and Gardner, 2018, for rationale).

We fit the population response functions for each cortical area to the 32 measurements of response

magnitude (4 base contrasts × 4 base coherences × 2 task conditions) during task performance:

Rarea(scon, scoh) = Rarea,con(scon +Rarea,coh(scoh) + αtask (3.6)

We added the αtask parameter to fit additive offset while allowing the αcon (Eq. 3.4) and αcoh

(Eq. 3.5) parameters to change to fit multiplicative gain. The parameters for the response functions
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were initialized according to the passive viewing data in Birman and Gardner (2018) with the σ and

κ parameters held constant such that response functions maintained their shape. For reference, the

initial αcon parameter in V1 was 1.68, V2: 0.69, V3: 0.63, V4: 0.61, V3A: 0.35, V3B: 0.24, V7: 0.32,

and MT: 0.22. The initial slope of the coherence response function in V1 was 0.07% signal change /

unit coherence, V2: 0.16, V3: 0.18, V4: 0.11, V3A: 0.25, V3B: 0.14, V7: 0.20, MT: 0.34. For each

cortical area there were six free parameters (3 parameters × 2 task conditions) fit by minimizing

the sum of squared error using the MATLAB function lsqnonlin.

3.2.7 Linking model

To link cortical responses to the perception of motion visibility, we modeled the decision process

of an observer as a comparison of linearly weighted responses from retinotopically defined visual

cortical areas subject to additive Gaussian noise. The model assumed the form of a probit regression

in which the difference in weighted cortical responses for the two stimuli were passed through a

probit function to make a trial-by-trial prediction of a choice for the stimulus on the right (Fig

3.4). The response to each visual stimulus for each cortical visual area was calculated from the

parametric forms of population response functions for contrast and coherence, as defined above.

When validating the model assumptions such as additive noise and lack of choice history terms,

we used the parameters for the population response functions that were fit to passive viewing data

(Birman and Gardner, 2018). To test whether fixed or flexible readouts were needed to explain

task performance, we used parameters for the population response functions fit to BOLD data

collected during task performance, as described above. The linking model parameters that were fit

by maximum likelihood estimation to the behavioral data were the weights for each visual area (in

different versions of the model we either fit all 8 visual areas or subsets of visual areas) and a bias

term to account for any propensity to choose one side over the other. For the fixed readout there

was one set of cortical weights for both tasks and for the flexible readout there were two sets of

weights, one for each task. We describe in more detail the specifics of the model below.

We used the population response functions (Eq. 3.4, 3.5) to simulate the trial-by-trial response

of visual cortical areas to the stimulus in either hemifield (Eq. 3.6). The parameters of the functions

were either from the fit to passive viewing data or during task performance. Summing the response

for contrast and coherence assumes that the responses to contrast and coherence are independent of

each other, which we showed to be the case in Birman and Gardner (2018).

To obtain the ‘readout’ of this representation from multiple cortical areas we proceeded by

linearly weighting the area responses (Fig. 3.4). The full readout with all visual areas was computed

with the following equation:

Rpatch(scon, scoh) = βV 1RV 1(scon, scoh) + βV 2RV 2(scon, scoh) + ...+ βMTRMT (scon, scoh) (3.7)
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Where the response for each area on the right side of the equation is computed according to Eq

3.6. Each β was a free parameter which set the weight assigned to cortical areas in the readout

process. We use the phrase fixed readout to refer to a model in which there are 8 cortical readout

weights in total (one for each cortical area) shared across the two task conditions. Implicitly the

fixed readout model therefore assumes that the measured cortical responses must differ between

task conditions to accommodate changes in behavior. We use the phrase flexible readout when 16

weights were allowed, i.e. a separate weight for each task for each cortical area. In addition to the

8 cortical area models we also fit models in which we only used the response of areas V1 and MT,

the most contrast and coherence sensitive human cortical areas, respectively (Birman & Gardner,

2018).

To compute the probability of an observer choosing the stimulus on the right we passed the

difference in response to the two stimuli through a cumulative normal distribution (Bliss, 1934):

Pright(s(con,left), s(con,right), s(coh,left), s(coh,right)) =

Φ(Rright(s(con,right), s(coh,right))−Rleft(s(con,left), s(coh,left)) + βbias)
(3.8)

Where Rright and Rleft are the weighted cortical responses to the two stimuli on each trial, as

calculated using Eq. 3.7. βbias accounts for any bias to one side or another and Φ is the cumulative

probability of a normal distribution with µ = 0 and σ = 1.

In the linking model, we allowed an additional parameter λ to capture the observer’s lapse rate,

modifying Eq. 3.8:

Pright(s, ..., λ) =
λ

2
+ (1− λ)Φ(Rright(s...)−Rleft(s..) + βbias) (3.9)

We empirically estimated the lapse rate by finding the rate of observer errors on trials with a

stimulus strength far above threshold (Prins, 2012). Because we occasionally reset the step size in the

staircases we were able to record a non-negligible number of trials with large stimulus increments,

from these we selected trials in which the increment was at least 15% for contrast or 40% for

coherence, which corresponded to increments of at least 2× threshold (15% and 40% also correspond

to the maximum increment which could be shown at the highest base strength of contrast and

coherence, respectively). Computed in this way λ varied from 0 - 7% (mean 3.0%, 95% CI [1.94,

4.56]).

We fit all variants of the linking model with maximum likelihood estimation using the active-set

algorithm as implemented by the function fmincon in MATLAB. To avoid getting trapped in local

minima we randomized the starting parameters and repeated the fitting procedure multiple times.

We fit the linking model both within observers and across observers to test for generalization.

Several observers were involved in both the experiments reported here as well those reported in

Birman and Gardner (2018) and so their linking models could be fit within-observer. To ensure

generalization we also computed the average population response functions and used those to fit the
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linking model to the individual perceptual measurements from each of the 21 observers, including

those who did not have within-subject measurements of cortical responses. For the population

response functions estimated from passive viewing data the averaged-physiology and within-subject

models had similar cross-validated log-likelihoods, log(
Laverage
Lwithin )= -2.22, 95% CI [-8.18, 4.71]. This

suggests that the population response functions were similar across subjects and that noise in the

physiological measurements is reduced by averaging across observers. For the measurements during

task performance there was a large improvement from using averaged-physiology data, log(
Laverage
Lwithin )=

34.6, 95% CI [-6.4, 185.4], presumably due to the lower signal-to-noise ratio in those data because

the stimulus was limited to 0.5 s.

Linking model variants

To capture bias due to past choices (Abrahamyan, Silva, Dakin, Carandini, & Gardner, 2016; Fründ,

McCann, & Williams, 2016) we tested models with additional stay/switch bias parameters. We

added four additional parameterstwo which absorbed bias after correct responses (usually found to

be a bias toward the same side) and a second which absorbed bias after incorrect responses (usually

found to be switching after errors). For clarity we show Eq. 3.8 modified, but this model was still

fit with the lapse rate (Eq. 3.9):

Pright(s...) = Φ(Rright(scon, scoh)−Rleft(scon, scoh) + βbias + β(left,correct)Cleft+

β(right,correct)Cright + β(left,incorrect)Ileft + β(right,incorrect)Iright
(3.10)

Where C and I are binary variables set by whether the last trial was correct or incorrect,

respectively, and had a response on the corresponding side (i.e. Cleft = 1 if the observer chose left

on the last trial and was correct).

We also fit an efficient selection variant of the linking model where responses are weighted ac-

cording to their magnitude during active viewing (Hara & Gardner, 2014; Pestilli et al., 2011). In

this version of the model the responses in each cortical area were raised to an exponent ρ, multi-

plied by the cortical readout weights, and then the exponent root was taken before passing through

the cumulative normal. The effect of this transformation is that an area which has a larger base

response, through the exponential, will dominate the final signal. Again, for clarity we show this

modification for Eq. 3.8 but the full model included lapse rates (Eq. 3.9):

Pright(s...) = Φ( ρ

√
Rright(scon, scoh)ρ −Rleft(scon, scoh)ρ + βbias) (3.11)

The linking model described so far makes the assumption that sensory noise limiting perception

is additive, i.e. independent of stimulus strength, but we also tested a variation with noise that

increased with response strength. If readout was limited by the variability of individual or small
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groups of correlated neurons, we might expect sensitivity to be subject to noise which increases

with response. We tested this Poisson variant of the model by setting the variance (i.e. σ2 in Eq.

3.8) of the noise to the average population response in the two dot patches, prior to being passed

through the readout weights. Following the equations above this computation is done by averaging

the response across areas for each dot patch:

σ2
patch =

RV 1 +RV 2 + ...+RMT

N
(3.12)

Where N is the number of areas averaged and Rarea is computed using Eq. 3.6. We based the

noise on the signal prior to readout under the assumption that Poisson noise would be generated by

spiking variability occurring in the sensory system.

3.2.8 Interpreting linking model parameters

Using the fit model parameters, we were able to determine an estimate of the magnitude of noise

limiting an observers perceptual sensitivity in units of BOLD percent signal change. Because we

set σ = 1 in the cumulative normal function of Eq. 3.7 we can estimate the noise in the sensory

representation from the weight parameters. According to Eq. 3.8, a unit input difference between

Rright and Rleft will allow the observer to achieve threshold performance. It follows then that the β

weights (Eq. 3.7) can be interpreted as scaling the raw BOLD responses such that a unit difference in

weighted response gives rise to threshold performance. Assuming a standard signal-detection model

where perceptual sensitivity (d) is equal to the difference in responses divided by the standard

deviation of the noise, a small β weight would suggest a large amount of noise is limiting perception

as it would take a very large difference in response to get threshold performance. Conversely a large

β weight would suggest the opposite, that only small differences in response are needed for threshold

performance. More formally, if one considers just one area, such as V1:

Threshold performance(d′ = 1) =
(RV 1,right −RV 1,left)

σV 1
= βV 1(RV 1,right −RV 1,left) (3.13)

Therefore, the β weights are inversely proportional to the implied neural noise, σ, of the repre-

sentation which limits perception.

To recover the model’s just-noticeable differences (Fig. 3.2) we proceeded analytically. As

described above, because we fit the additive noise model with the noise parameter σ = 1 the

population response functions, after scaling by the beta weights, are in units of standard deviations.

To find the just-noticeable difference relative to a base stimulus strength we simply calculated the

increment in signal needed to increase the readout response by one, equivalent to d
′

= 1. This is

because when σ = 1 we can reduce:
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d′ = 1 =
R(base+ increment)−R(base)

σ
(3.14)

to simply:

R(base+ increment)−R(base) = 1 (3.15)

Model Comparison

To compare the different variants of the linking model we used the cross-validated log-likelihood ratio

and Tjurs coefficient of discrimination (Tjur, 2009). Each variation of the linking model was fit in a

10-fold cross-validation procedure. 10% of the data was reserved for validation while the remaining

90% used to train. The log-likelihood was computed for each validation set and summed across all

ten folds. To compare any two variations of the linking model we computed their likelihood ratio (i.e.

the difference in total log-likelihood). The cross-validated log-likelihood ratio is similar in principle

to measures of information criterion and sometimes referred to as the cross-validated information

criterion (McLachlan & Peel, 2000). When the difference in this statistic between two models is large,

e.g. greater than 10 (Burnham & Anderson, 2004), it indicates a substantial improvement in model

fit. We use the cross-validated log-likelihood ratio rather than other information criterions (e.g. AIC,

or BIC) because the cross-validation procedure already penalizes models with additional parameters

for over-fitting. Although the cross-validated log-likelihood is useful for model comparison it is

difficult to interpret its absolute magnitude in isolation. To help with interpretation we also report

the cross-validated coefficient of discrimination CD.

CD = µright − µleft (3.16)

Where µright is the models average predicted likelihood of a rightward choice for validation trials

when the observer chose right and µleft when the observer chose left. If the model predicts choices

perfectly, then µright would be 1 and µleft would be 0, giving a value for CD of 1. If the model is

at chance at predicting choices than CD would be 0. CD therefore indexes the difference between

the centers of the trial-by-trial prediction distributions and although not a true measure of variance

explained it shares many of the properties of r2 and can be interpreted in a similar manner (Tjur,

2009).

3.3 Results

3.3.1 Perceptual sensitivity to motion visibility

We characterized human perceptual sensitivity to the contrast and coherence of moving dots while

observers had to report exclusively about one feature and ignore the other. We measured observers
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Figure 3.1: Behavioral task. Observers discriminated which of two random dot stimulus patches had
higher contrast or coherence in different blocks of trials. Each block began with the word contrast or
motion indicating that observers should report about contrast or coherence, respectively, and ignore
the other feature. Between trials (Inter-trial interval) and during all but the Stimulus segment,
the dot patches were presented at 25% contrast with incoherent motion. On each trial both dot
patches increased by independent base increments of contrast and coherence (+7.5, +15, +30, or
+60% contrast +15, +30, +45, or +60% coherence) for 0.5s (Stimulus). In addition, for each feature
one side was chosen independently to have an additional threshold-level increment, determined by
a staircasing procedure. For regular trials, after a 0.5 - 1s period (Delay), observers were asked to
report which side contained the additional increment in contrast or coherence (Response) and were
given feedback (Feedback). On a subset (Catch trials) of runs (2/5) on rare trials (1/7) the delay
period was followed by a post-cue (Post-cue), the letter M or C, indicating that the observers should
prepare a response about the un-cued feature. Additional time was given to observers to make these
decisions (post-cue period of 1.5 s, response window of 2.5 s) and observers did not receive feedback
on catch trials.

just-noticeable differences (JND) in image contrast or motion coherence between a pair of simul-

taneously presented random dot stimulus patches in a two-alternative forced choice task (Fig 3.1).

Each block of trials began with either the word “contrast”, indicating that observers should report

which dot patch had higher contrast while ignoring differences in coherence, or “motion”, indicating

the opposite. Each trial consisted of a 0.5 s base increment in the contrast and coherence of both

dot patches (at all other times the dot patches were kept visible at 25% contrast and 0% coherence).

In addition to this base increment a small additional increment near perceptual threshold was added

to one side independently for each feature. Therefore, for every trial regardless of cueing condition

there was a difference in both features between the two dot patches and each patch was equally

likely to contain the additional increment. After stimulus presentation and a brief delay, observers

reported which side had the higher magnitude of the cued feature and received feedback.
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Figure 3.2: Perceptual sensitivity to contrast and motion coherence and fit of validation linking
model. (a) Contrast task. The markers plot the average probability across observers and base
stimulus strengths of indicating that the right dot patch had higher contrast or motion coherence
while performing the contrast task, as a function of the difference in contrast (orange) or coherence
(blue) between the two patches. Curves plot the predictions of the eight-area linking model using
measurements made during passive viewing. These were fit to each individual observers behavioral
data with a flexible readout, therefore fitting each task separately. (b) Coherence task, conventions
same as (a). (c) Markers plot the just-noticeable difference for contrast during that task estimated
from a Weibull function fit for each base stimulus strength, averaged across observers. Curves
indicate the average prediction of the 8-area linking model across observers. (d) Same as (c) for the
coherence task. All markers indicate the mean and error bars the 95% confidence interval across
observers. Curves indicate the mean model prediction across observers and shaded areas the 95%
confidence intervals. Some error bars are hidden by the markers.

3.3.2 Observers were able to report about each motion visibility feature

independently.

Collapsing across observers and base stimulus strengths we found that observers were sensitive to

the feature they were asked to report (dark orange, Fig. 3.2a, and dark purple, Fig. 3.2b), but

insensitive to the features they were asked to ignore (light purple and light orange, Fig. 3.2a and

3.2b). The psychometric functions (circle markers in Fig. 3.2a) were well fit by cumulative normal

distributions (not shown, average cross-validated r2pseudo = 87.7%). This suggests that observers

decisions were consistent with a signal detection process in which two sensory representations were
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compared subject to Gaussian noise. Separating out sensitivity by base stimulus strength, we ob-

served a proportional increase in just-noticeable differences (Fig. 3.2c-d) reminiscent of Weber’s

law. Webers law states that the slope of this relationship should be 1 on a log-log axis but we found

slopes less than one for contrast, 0.44, 95% CI [0.41 0.50], consistent with previous studies (Gorea &

Sagi, 2001; Pestilli et al., 2011), and 0.81, 95% CI [0.78 0.85] for coherence. Fitting a Weibull func-

tion on a subject-by-subject basis for base contrasts 32.5, 40, 55 and 85% we found just-noticeable

differences in contrast (Fig. 2c) to be 4.6%, 95% CI [3.8, 5.5], 4.8%, 95% CI [3.9, 5.8], 5.5%, 95%

CI [4.9, 6.2], and 7.5%, 95% CI [5.3, 9.8], respectively. For base coherences 15, 30, 45, and 60% we

found just-noticeable differences in coherence (Fig. 2D) to be 14.2%, 95% CI [12.9, 15.5], 17.7%,

95% CI [14.3, 21.1], 20.2%, 95% CI [15.1, 25.3], and 21.3%, 95% CI [16.7, 25.9], respectively. Note

that for contrast the base stimulus strengths are reported as the absolute value and not the relative

increment from the 25% contrast and incoherent motion that was shown continuously throughout

the experiment.

3.3.3 Changes in cortical representation of motion visibility during task

performance

We measured BOLD signal in retinotopically defined visual areas and found small changes in sensory

responses when observers switched between reporting contrast and coherence (Fig. 3). Ten of the

observers who performed the behavioral experiments repeated the task in the magnet. We used these

measurements to examine how the contrast and coherence responses changed, either by multiplicative

gain or additive offset, in each visual area (see Methods). For a majority of subjects, we found that

when reporting about contrast, compared to reporting about coherence, the response to contrast

in cortex showed a multiplicative gain (Fig. 3.3a). The average increase in αcon (Eq. 3.4) over

areas and observers was 0.13% signal change / unit contrast, 95% CI [0.07, 0.19]. The direction

of this effect wasnt always consistent, in V1 8/10 observers showed an increase; for V2 6/10; V3

7/10; V4 7/10; V3a 7/10; V3b 7/10; V7 5/10; MT 6/10. For the coherence response, we found no

consistent change in the slope of the response function when reporting about coherence 3.3b). The

average over areas and observers was -0.02% signal change / unit coherence, 95% CI [-0.08, 0.04]),

though some individual areas like MT showed an increase. These changes were inconsistent across

observers, in V1 6/10 observers showed an increase in the linear slope of the coherence response; V2

6/10; V3 6/10; V4 6/10; V3a 4/10; V3b 5/10; V7 6/10; MT 6/10). In some linking models additive

offsets have been shown to account for the perceptual benefits of selective attention (Pestilli et al.,

2011). We found that reporting about the stimuli, rather than passively viewing them, led to an

additive offset in most visual areas (Fig. 3.3c). Average increase in αtask (Eq. 3.6) over areas and

observers compared to passive viewing was 0.36% signal change, 95% CI [0.30, 0.44]. Additive offsets

were slightly larger during the contrast task than the coherence task (Fig. 3.3c). Averaged over

areas and observers this effect was a modest 0.07% signal change, 95% CI [0.01, 0.14]. In summary,
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Figure 3.3: Cortical measurements during active viewing. Observers performed the behavioral task
while hemodynamic responses in retinotopic visual cortex were measured. (a) The average across
observers of the αcon parameter, a measure of contrast sensitivity, is shown for each task context
(dark and light markers are the contrast and coherence task, respectively). Inset shows how the
change in the parameter affects the change in the contrast response function for V1, ignoring any
change in additive offset. (b) As in (a) for coherence sensitivity as measured by the linear slope of the
coherence response function (dark and light markers are coherence and contrast task, respectively)
and inset shows the relationship for MT. (c) As in (a-b) for the αtask parameter which absorbs
additive offsets. Inset shows the additive offset shift for MT.

we measured small changes in sensory response between task conditions and found that in some

cortical areas contrast sensitivity increases when subjects perform the contrast task and coherence

sensitivity increases when subjects perform the coherence task. While these changes are in the right

direction to underlie task performance, a formal linking model is required to determine if they are

large enough to account for perceptual behavior.

3.3.4 Linking model between cortical representation and perception of

motion visibility

We set out to build such a linking model (Fig. 3.4) that could quantitatively predict behavioral

performance from measurements of cortical sensory representation. Once validated, such a model

could then be used to assess whether the sensory changes we measured were large enough to explain

behavioral performance in the task conditions. Linking models have been built for contrast discrim-

ination tasks by assuming that higher contrast is detected by comparing the magnitude of cortical

responses evoked by different stimuli, subject to some noise (Boynton et al., 1999; Foley & Legge,

1981; Gardner, 2015; Ling & Carrasco, 2006; Nachmias & Sansbury, 1974; Pestilli et al., 2009).

Behavioral sensitivity is determined by the ratio of response difference to the standard deviation of
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Figure 3.4: Readout linking model. The linking model simulates the cortical response evoked by each
dot patch according to an existing framework (Birman & Gardner, 2018) which parameterized the
contrast response function (orange curves) as a Naka-Rushton and the coherence response function
(blue curves) as linear, or a saturating exponential function. The model weights the cortical responses
from each visual area (β values) evoked by the stimulus (Right or Left) according to the current
task. The model then takes the difference between the signals evoked by each stimulus, plus a bias
term (βbias) to account for any individual observers bias to choose one response over the other. To
convert from this weighted signal to probability of choosing the patch on the right, the signal is
passed through a cumulative normal distribution (curve on right). The linking model is analogous
to probit regression with nonlinear input signals.

the noise, as in the classic signal detection measure d. In our task, cortical responses are the result

of stimuli that differ both in contrast and coherence. The linking model therefore needed to be

able to differentiate which feature caused a difference in response. We reasoned that this could be

accomplished by properly weighting visual areas with different sensitivity to each stimulus feature.

Our model took the form of a probit regression (Bliss, 1934) in which the difference in weighted re-

sponse of visual areas to the two stimuli were computed and passed through the cumulative normal

distribution to predict the probability of different choices (Fig. 3.4, see Methods: Linking model for

full description).

Before evaluating such a model on the measurements of cortical activity during task performance

(Fig. 3.3), we wanted to validate that such a linking model could in principle account for contrast and

coherence discrimination. In previous work we published measurements of contrast and coherence

response in cortex while observers passively viewed the same random dot stimuli used here (Birman

& Gardner, 2018). These measurements were used to quantify the shape of contrast and coherence

responses across retinotopically defined visual areas using functional forms (Naka-Rushton for con-

trast and a saturating exponential form for coherence, see Eq. 4 and 5). These passive-response

data showed, for example, that V1-V4 are relatively more sensitive to changes in image contrast,

whereas MT is more sensitive to changes in motion coherence. For reference, the parameters describ-

ing these differences in sensitivity are reported in the Methods (for additional details see: Birman

and Gardner (2018)). Using the functional forms measured during passive viewing we simulated

the trial-by-trial response of eight visual cortical areas, V1-V3, V4 (hV4), V3A, V3B, V7, and MT
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(hMT+), and modeled sensory readout on each trial as a task-dependent linear weighting of the

population responses (Fig. 3.4). This resulted in a scalar response for the left and right stimulus

patches (Σright, Σleft) on each trial. The observers decision about which side had the higher cued

feature was modeled as a comparison between these two scalar responses (Σright − Σleft) summed

with a side bias (βbias). This scalar decision variable was subject to Gaussian noise as implied by

the cumulative normal of the probit link function. We fit the parameters of the linking model using

maximum likelihood estimation for each observer (8 cortical area weights × 2 task conditions + 1

bias parameter = 17 total parameters) using the average population response functions from Birman

and Gardner (2018).

We found that the linking model based on the passive viewing BOLD data was a good fit for the

behavioral measurements (curves, Fig. 3.2), capturing both the shape of the psychometric functions

and the increase in just-noticeable differences with increasing base stimulus strength. To evaluate

models we examined Tjurs coefficient of determination (CD), a measure intended to be interpreted

similarly to r2 for models of binary decisions (Tjur, 2009). To compare models, we computed cross-

validated log-likelihood ratios (see Methods: Model comparison). We found across observers an

average CD of 0.44, 95% CI [0.42, 0.45] reflecting that the model captured the sensitivity of human

observers to differences in visibility across both task conditions (curves, Fig. 3.2a-b) as well as the

reduced sensitivity at increasing base stimulus strength (curves, Fig. 3.2c-d). The fits shown are for

the 8-area model, but we also tested a model with only the two areas with the highest contrast and

coherence sensitivity, V1 and MT (2 cortical area weights × 2 task conditions + 1 bias parameter

= 5 total parameters). We found a similarly good fit, log(L2

L8
) = 7.38, 95% CI [-3.09, 32.78]. The

average CD of the 2-area model was also 0.44, 95% CI [0.43, 0.45].

The linking model fit weights according to the relative sensitivity of each cortical area to contrast

and coherence (Fig. 3.5). In the 8-area model the contrast task weights (x-axis, Fig. 3.5a) are

proportional to how sensitive each area is to contrast relative to coherence: V1-V4 have positive

weights, while only MT was given a negative weight. The negative weight on MT counteracts

sensitivity to coherence in V1-V4 and ensures the linking model was insensitive to coherence when

reading out contrast. The weights for the coherence task (y-axis, Fig. 3.5a) behaved similarly, with

MT getting the largest positive weight and V1 a slight negative one. A similar pattern was observed

for a model with only areas V1 and MT (Fig. 3.5b) but with less negative weighting in the coherence

readout.

Using model comparison, we validated our linking model assumptions that noise is additive and

that observers had no dependency on choice history. Models based on single-unit variability often

assume a Poisson-like noise (Softky & Koch, 1993), but because our model is based on population

activity for which independent single-unit variable would be expected to average out, we modeled

an additive noise component. This choice of additive Gaussian noise was important. A model using

Poisson noise which increased with stimulus strength did not fit the data (Fig. 3.6). On average
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Figure 3.5: Cortical area weights. (a) The weights of the flexible-readout model fit to passive viewing
data are shown for the contrast task (x-axis) and coherence task (y-axis) for the eight cortical areas
we defined retinotopically: V1, V2, V3, V4 (hV4), V3A, V3B, V7, and MT (hMT+). (b) As in (a)
but for the 2-area model with only V1 and MT. All markers indicate the mean across observers and
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across observers the additive model was a better fit compared to the Poisson model, log(LadditiveLPoisson ))=

43.58, 95% CI [18.84, 77.93] (Fig. 6c) and improved CD by 0.01, 95% CI [0.00, 0.02] (Fig. 6d). A

number of studies have found that observers performing psychophysical tasks are biased by previous

choices even when those choices are uninformative for the current trial (Abrahamyan et al., 2016;

Fründ, Wichmann, & Macke, 2014). We also tested for possible biases due to choice history (see

Methods) but found that including these additional fit parameters caused the cross-validated log-

likelihood to deteriorate, suggesting over-fitting, log(
Loriginal
Lstay/switch

)= 3.66, 95% CI [0.31, 9.08]. Thus,

model comparison was able to validate that choice history effects were negligible, and that noise was

best assumed to be additive rather than Poisson.

3.3.5 Using the linking model to test fixed vs flexible readout

Having verified the linking model based on passive viewing data, we now asked whether the small

changes in sensory representation which we measured during task performance could account for how
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perceptual sensitivity changed when observers switched task. If sensory changes were sufficiently

large, then the readout could be fixed between task conditions. Such a fixed readout model would

only require a single set of cortical area weights with changes in perception accounted for only by

changes in sensory responses. As a baseline for comparison, we first fit the fixed-readout model on the

sensory responses measured during passive viewing where by definition there are no sensory changes

between task conditions. This passive-response fixed-readout model can only produce behavior that

is intermediate between the two tasks. That is, it is sensitive to both contrast and coherence (Fig

3.7a, orange/yellow contrast curves and blue/purple coherence curves are not flat) and cannot switch

sensitivity between the two tasks (Fig 3.7a, curves for left and right panels are identical). The CD

and likelihood of the passive-response fixed-readout model provide a lower bound on the possible

explainable variance (Fig. 3.7d and e).

Fitting the fixed-readout model to sensory responses measured during task performance showed

that while changes in sensory response could account for a substantial amount of the behavioral

performance, the changes were insufficiently large to fully explain task performance. This task-

response fixed-readout model achieved a better fit of the behavioral data than the passive-response

fixed-readout model (Fig. 3.7d and e, compare magenta and blue points) thus quantifying how
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much the sensory changes reported above can account for behavioral performance. Indeed, the task-

response fixed-readout model was better able to capture differences in behavior between the contrast

and coherence task (Fig 3.7b, compare curves for left and right columns). However, the linking model

failed to completely capture the ability of subjects to change their perceptual sensitivity to contrast

and coherence between the two tasks. In the contrast task, the contrast sensitivity curve (orange,

Fig 3.7b) does not match the sensitivity of the observers and the model predicted a weak bias for

coherence (light purple, left panel Fig 3.7b) that the subjects did not show. In the coherence task,

the coherence performance was reasonably well-matched (purple curve, right panel), but the model

predicted strong bias from contrast (orange curve).

Rather than rely only on changes in sensory representation between tasks, a linking model that

could read out responses from visual areas differently between tasks was better able to fit the

behavioral performance. We tested this task-response flexible-readout model by allowing the weights

for different visual areas to change between tasks while still using the sensory responses measured

during task performance. This model provided reasonable fits to the behavioral data (Fig. 3.7c),

capturing the performance during the contrast task (left column), although it did predict more bias to

contrast during the coherence task then the observers displayed (orange curve, right panel). Because

the fixed-readout and flexible-readout models had different numbers of parameters (fixed-readout

= 9 parameters, flexible-readout = 17) it was critical to evaluate the models with a cross-validated

metric. We found that for the task-response measurements the flexible-readout model was a far

better fit than the fixed-readout model (Fig. 3.6f and g), log(
Lflexible
Lfixed ))= 60.16, 95% CI [44.90,

77.75], difference in CD, 0.06, 95% CI [0.04, 0.07]. Note that observers who we measured physiology

for (black bars, Fig. 3.7f and g) show a larger improvement in model fit compared to the other

observers, which we attribute to an effect of increased training.

Observers who we measured physiology for (black bars, Fig. 6C and D) show a larger improve-

ment in model fit compared to the other observers (gray bars). One explanation for this effect is

that the observers we measured in the scanner were better able to ignore the irrelevant feature due

to having more practice. The fixed readout model, which predicts an inability to ignore the irrele-

vant feature, would then fail more dramatically for better-trained observers. Indeed, observers who

were a part of the scanning were slightly better (n=11 observers, mean just-noticeable difference

for contrast 5.62%, 95% CI [4.98, 6.50], and coherence 18.06%, 95% CI [16.32, 21.15]) compared to

observers who did not participate in scanning (n=10, mean just-noticeable difference for contrast

10.02, 95% CI [6.23, 19.95], and coherence 21.40%, 95% CI [18.64, 25.03]).

As additive offsets have been used with a fixed readout to explain behavioral performance dif-

ferences with spatial attention (Pestilli et al., 2011), we also tested an efficient selection model that

weights responses according to their magnitude, but found that this model also could not explain

the behavioral performance. An increase in additive offset during one task condition or the other
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could be used by an efficient selection model that weighs signals by their magnitude (Hara & Gard-

ner, 2014; Pestilli et al., 2011), e.g. selecting out V1 during the contrast task and MT during the

coherence task. On average response magnitudes did increase a moderate amount when observers

performed the task compared to the passive viewing condition, but these additive offsets were similar

for both tasks (Fig. 3.5C). We found that the flexible model was a far better explanation than an

efficient selection model (see Methods for implementation details), log(
Lflexible
Lselection ))= 130.39, 95% CI

[109.66, 151.31], difference in CD, 0.30, 95% CI [0.28, 0.32].

3.3.6 Behavioral evidence for a flexible readout

One advantage to keeping sensory representations relatively stable is that observers can maintain

information about unattended features. To measure whether observers could recall unattended

information we included catch trials in the behavioral task. In catch trials, observers were shown

a post-cue after stimulus presentation which indicated that they should report about the un-cued

feature (bottom time line, Fig. 3.1). Observers made these reports despite the stimulus having

already been presented and despite having already had 0.5 s to prepare their response for the main

task. We were able to ensure observers did not split their attention by keeping the main task at

perceptual threshold, making catch trials rare, and not providing feedback.

Because observers were told at the start of each block ( 65 trials or 4 minutes) whether or not

catch trials would occur there is a concern that they could have split their attention, but we found no

evidence for this. In other dual task settings there is a significant cost associated with performing two

tasks at the same time (Sperling & Melchner, 1978), especially when one or both tasks are difficult

(near perceptual threshold). Note that we designed the catch trials to minimize this effect by making

them rare and not providing feedback. If observers split their attention, we would expect to detect

an increased just-noticeable difference (JND) on the cued main task. Instead, we found that the

just-noticeable differences were similar: on runs with catch trials the contrast task JND increased

by only 0.19% contrast, 95% CI [-0.19, 0.78], and for the coherence task by 0.74% coherence, 95%

CI [-0.76, 3.13].

During catch trials we found that observers were less sensitive to the un-cued motion visibility

features compared to when they were cued, but nevertheless they maintained significant information

about the unattended features. Observers just-noticeable differences were larger on the catch trials

both for the contrast task (average ∆ just-noticeable difference = +5.30% contrast, 95% CI [+3.83,

+7.22]) and coherence task (∆ just-noticeable difference = +45.84%, 95% CI [+26.17, +98.23]) (Fig.

7). These averages (and subsequent analysis) exclude 4/21 and 1/21 observers for the coherence

and contrast tasks, respectively, because they could not perform the task and their just-noticeable

differences were not measurable (i.e. their JND was more than what could be displayed on the

screen).

If observers had a fixed readout which could not switch to the ignored feature during catch trials,
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Figure 3.8: Perceptual sensitivity on catch trials. Just-noticeable differences (JND) for contrast
(left) and coherence (right) are shown for the regular (control, light colors) and catch (dark colors)
trials during runs that included catch trials. Predicted just-noticeable differences for catch trials are
shown for the fixed readout model (dashed lines). Markers indicate the average across observers and
error bars the 95% confidence intervals, some error bars are hidden by the markers.

then they would be forced to use the wrong readout and performance would be extremely poor. We

found that this fixed readout model predicted much higher just-noticeable differences than measured

and therefore could not account for catch trial behavior. That is, we used the task-response flexible-

readout model to compute the expected JND on catch-trials assuming that observers were unable

to switch the readout to the post-cued feature. For example, for the contrast-task in which the

catch trials required making a coherence judgement, we used the cortical readout weights for the

contrast-task (βV 1,βV 2,...), and vice-versa. This model underestimated human performance on catch

trials (dashed lines, Fig. 3.8). On contrast catch trials (i.e. post-cued trials when observers reported

about contrast, during a run where the main task was coherence) the model predicted just-noticeable

differences of 56.9%, 95% CI [33.8, 80.1], but the average observer had a JND of only 10.1% contrast,

95% CI [7.5, 12.7]. On coherence catch trials the model predicted that observers would be incapable

of performing the task but the average observer JND was 40.8% coherence, 95% CI [32.4, 49.2].

Instead, we found that a better explanation for catch trial behavior came from a readout which

could dynamically change within trials but incurred an additional cost for maintaining sensory

information in working memory. This cost could be due to a drop in the signal-to-noise of the

sensory representation, perhaps due to responses degrading over time. We estimated the cost by

dividing the thresholds measured during catch trials by the thresholds measured during regular

trials. This approach suggests that on average σ increased (or responses degraded) for coherence

by a factor of 3.44, 95% CI [2.46, 5.90] and for contrast by 2.21, 95% CI [1.87, 2.66]. The overlap

in estimates suggests a single cost, i.e. the change from a discrimination task to a working memory

task, might govern the change in performance for both tasks; averaging the increase in noise gives

an estimated reduction in sensitivity of 2.83, 95% CI [2.31, 4.17]. Thus, a model which allows

rapid re-weighting, combined with a fixed cost for using working memory, can explain behavioral



CHAPTER 3. A FLEXIBLE READOUT MECHANISM 67

performance for both contrast and coherence catch trials.

3.4 Discussion

We found that observers were able to independently judge the visibility of patches of moving dots

based on either their contrast or coherence. Concurrent measurements of BOLD activity showed

that there were small changes in sensory representations during task performance. Cortical responses

were somewhat more sensitive to contrast during contrast discrimination and, in some areas like MT,

more sensitive to coherence during the coherence task. Our analysis with a fixed-readout linking

model showed that these changes could account for some, but not all of the behavioral performance.

Instead, the behavior was consistent with a flexible readout of sensory representations. Keeping

representations relatively stable should allow observers to retain information about unattended fea-

tures and we found that during catch-trials this was the case. Our results highlight the importance

of using models that quantify the link between cortical representation and perception.

3.4.1 Linking models for human motion visibility perception

We manipulated the contrast and coherence of random dot motion stimuli because of the extensive

existing knowledge of how neural representations of these features are related to visual perception

(Gold & Shadlen, 2007) and because their similar representation in cortex suggests that changing

the representation of one will necessarily affect the other. Contrast, the average difference between

bright and dark (Bex & Makous, 2002), and coherence, the percentage of dots moving in the same

direction, both control the visibility of motion. Human cortical visual areas are known to be sensitive

to these properties such that an increase in visibility results in monotonically increasing responses

throughout visual cortex (Avidan et al., 2002; Birman & Gardner, 2018; Britten et al., 1993; Gardner

et al., 2005; Logothetis et al., 2001; Olman et al., 2004; Boynton et al., 1996; Olman et al., 2004;

Rees et al., 2000; Tootell, Hadjikhani, Mendola, Marrett, & Dale, 1998b; Simoncelli & Heeger,

1998). For observers to judge these two features independently their sensory representations need

to be separated according to context, a step which existing linking models built for single features

have not had to contend with.

The computational steps from sensory representation to perception have been well characterized

for contrast discrimination. In these linking models an observers choice is computed by comparing

the evoked neuronal responses to different stimuli (Boynton et al., 1999; Foley & Legge, 1981;

Ling & Carrasco, 2006; Nachmias & Sansbury, 1974; Pestilli et al., 2009). Individual neurons

exhibit monotonically increasing responses to contrast (Albrecht & Hamilton, 1982), with different

parameterizations (Tolhurst et al., 1983) that can be pooled into a population response (Shadlen et

al., 1996). Such population responses to contrast are well-indexed by BOLD signal in human visual

cortex (Avidan et al., 2002; Boynton et al., 1996; Boynton et al., 1999; Gardner et al., 2005; Heeger
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et al., 2000; Logothetis et al., 2001). Linking models have been shown to account for BOLD signal

measurements and perceptual responses during contrast discrimination tasks (Boynton et al., 1999),

predict changes in these measures during surround masking (Zenger-Landolt & Heeger, 2003) and

detection (Ress et al., 2000), and have been used to describe the selection of signals from attended

locations (Hara & Gardner, 2014; Pestilli et al., 2011).

Our model extends a linking model of contrast discrimination (Boynton et al., 1999) to simul-

taneous judgments of contrast and coherence. To separate the intertwined sensory representations

of these features we allowed a linear weighting of cortical areas. The weights fit by the model con-

firmed that the bulk of information for these simple perceptual decisions was available in V1 for

contrast perception and MT for coherence. This matches with previous results implicating monkey

MT in judgments about motion (Britten, Newsome, Shadlen, Celebrini, & Movshon, 1996; Katz

et al., 2016; Newsome & Paré, 1988). But the weights also revealed that other areas could play

an important role in perception by suppressing correlated signals about un-cued features in the

readout. Our linking model is also specific to the random dot stimulus we chose. Changing the dot

density (Smith et al., 2006) or aperture size (Ajina et al., 2015; Becker et al., 2008; Costagli et al.,

2014) can result in decrements or zero response to increasing coherence, which would necessitate a

linking model specific to those stimulus properties. We chose our stimulus size, dot density, and dot

speed with these concerns in mind (for additional discussion of how stimulus properties affect the

coherence response see Birman and Gardner (2018).

The linking model we developed held only if sensory noise was modeled as additive but not if

variability increased in proportion with firing rate (Softky & Koch, 1993). Additive noise appears

repeatedly in the literature using linking models (Boynton et al., 1999; Hara & Gardner, 2014;

Pestilli et al., 2011; Sapir et al., 2005), in purely psychophysical approaches (Gorea & Sagi, 2001;

Neri, 2010, 2018), and in measurements of population activity from voltage sensitive dyes (Chen

et al., 2006). In our results, the Poisson noise model failed because it combined increasing noise

with response functions that saturate (Birman & Gardner, 2018); either of which alone predicts

the cumulative normal form of the psychometric functions and a Weber-law like effect at increasing

base stimulus strengths. This result suggests that the noise that limits perceptual behavior is not

the individual variability in firing rate of single neurons, which presumably is averaged out across a

population, but a correlated source of variability which is not dependent on response amplitude.

3.4.2 Flexible readout of sensory representations

Our results demonstrate that sensory change due to attention does not transform the sensory rep-

resentation directly into a form that can be used to drive motor responses. Instead, switching from

reporting one stimulus property to another must change the readout (i.e. weighting of connections),

which may begin to occur in sensory cortices (Ruff & Cohen, 2017) but must also extend beyond

them. One possible role for the response gain is that it works together with changes in readout,
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acting, as we calculated, as a weak form of sensory enhancement. Recent theoretical and experimen-

tal results suggest that such changes might improve the ability of a linear readout to differentiate

between stimulus-driven and internal signals (Ecker et al., 2016; Rabinowitz et al., 2015; Snyder

et al., 2018). These changes match with our finding that noise limiting perceptual sensitivity is due

to correlated internal variability. Sensory changes might also drive responses to be more aligned

with the readout dimension, effectively working together.

Although for our task the scale of sensory changes provided only a partial explanation for context-

dependent behavioral reports, this need not always be the case. In the literature on visual attention

there are many examples of changes in sensory representation as a result of task demands (Carrasco,

2011). We interpret these results and our own as falling within a continuum where task demands

are implemented by complementary changes in sensory representation and sensory readout. Sensory

effects that can alone account for behavioral changes would be at one end of this continuum. For

example, measurements of changes in spatial tuning (Kay, Weiner, & Grill-Spector, 2015; Klein

et al., 2014; Vo et al., 2017) may underlie bottom-up biases in spatial perception (Klein et al., 2016),

additive shifts in response (Buracas & Boynton, 2007; Li et al., 2008; Murray, 2008) can be used by

efficient selection mechanisms (Chen & Seidemann, 2012; Hara & Gardner, 2014; Pestilli et al., 2011)

to account for perceptual threshold enhancement, and changes in correlation structure during focal

spatial attention (Mitchell et al., 2009) can be sufficient to explain changes in perceptual sensitivity

(Cohen & Maunsell, 2010, 2009). These spatial attentional effects may reflect the combination of

a fixed sensory readout combined with changes in representation which select (Carrasco, 2011) and

align (Ruff, Ni, & Cohen, 2018) relevant signals while suppressing others.

Our results suggest that judgments of motion visibility rely on both a context-dependent readout

and changes in sensory representation, putting our task in a different part of the continuum described

above. Relying on flexible readout could help maintain adaptability in the face of uncertain task

demands. It is possible that given enough time and task-consistency observers could have shifted

their cortical implementation to solve our task using a fixed readout. This could be done by learn-

ing to pre-select relevant sensory representations, saving computational cost and speeding decision

making. Similarly, sensory representations may be kept stable for visual features that are relevant

for a variety of behaviors. For example, scene gist is known to survive inattention, both perceptually

(Li et al., 2002) and as information that can be decoded from BOLD signal measurements of visual

cortex (Peelen et al., 2009). How the human brain implements task demands may depend not only

on the form of sensory representation, the precise task demands, and the extent of learning, but

also on the associated computational costs (Gardner, 2019). Flexible readout might be implemented

by parts of prefrontal cortex which re-represent visual information in a context-dependent manner

(Bugatus et al., 2017), using dynamical properties that can selectively integrate different features

of sensory stimuli (Mante et al., 2013). Engaging these mechanisms requires resources to represent

and process aspects of sensory stimuli that may not be behaviorally relevant. Changing sensory
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representations and using a fixed readout may instead reflect a computationally efficient solution

where the visual system no longer has to contend with representing irrelevant stimulus information.

In general, the complimentary mechanics of sensory change and change in readout are both essential

tools for the human brain, allowing us to meet the demands imposed by daily life where constant

shifts in attention are necessary to achieve our goals.



Chapter 4

Aim 2: Comparing different forms

of selective visual attention on a

shared perceptual metric

4.1 Introduction

The demands of everyday life require us to flexibly shift our attention between many different aspects

of the visual world. When researchers operationalize such behaviors they often ask observers to select

information either from a specific location (spatial selection) or using a particular feature (feature-

based selection). The difference between these forms of selection seems intuitive at first glance and

may reflect a real physiological difference in how selection is implemented by the brain. It is also

possible that space and feature are treated identically by the visual system and that selection of

information is a generic computation.

Evidence exists to suggest that selection by location and feature differ in subtle ways. One

large difference is that feature-based attention operates as a global (spatially non-specific) form

of selection, e.g. for motion direction and color (Saenz et al., 2002). The implementation of this

global vs. local selection may explain why selection by location operates at a slightly faster rate

than selection by feature (Liu, Stevens, & Carrasco, 2007a; Hillyard & Münte, 1984; Harter, Aine, &

Schroeder, 1982). Spatial selection is also primary in some ways (Soto & Blanco, 2004; Tsal & Lavie,

1988). This has been demonstrated by showing that subjects are more likely to recall letters near an

attended location over letters of a similar color at distant locations (Tsal & Lavie, 1988) as well as

by showing that errors in letter recall occur for spatial neighbors but not for color-matched distant

neighbors (Snyder, 1972). It has also been proposed that to create objects out of visual properties

they must be bound together by location (Treisman & Gelade, 1980), making location primary over

71
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other features. Other comparisons have suggested that spatial and featural selection are impacted

by perceptual noise in different ways (Ling, Liu, & Carrasco, 2009). All of these results indicate

that under the right conditions small differences exist between these two basic forms of selection.

Are the small differences between spatial and feature-based selection a result of a difference in

how selection is implemented in the brain? We sought to answer this question by building a stimulus

in which selection by location, color, and motion direction can be compared on a shared perceptual

metric. We use this stimulus in two tasks, a perceptual averaging task and a working memory

estimation task. In both tasks observers are asked to select information either by spatial location or

according to a stimulus property (either motion direction or color) while reporting about the other

property. In both data sets we show that sensitivity is nearly identical between each form of selection

and that any differences in performance are accounted for by changes in bias to the dot patches which

were supposed to be ignored. We suggest possible implementations by which a common computation

could select sensory representations and account for the behavioral observations.

4.2 Methods

4.2.1 Observers

In total 15 observers were subjects for the experiments (8 female, 7 male). All observers except one

(who was an author) were naive to the intent of the experiments. Three observers were excluded

during the initial training sessions due to an inability to maintain appropriate fixation (see eye-

tracking below). Procedures were approved in advance by the Stanford Institutional Review Board

on human participants research and all observers gave prior written informed consent before they

participated in the experiment. When necessary, observers wore corrective lenses to correct their

vision to normal. Observers were filtered prior to inclusion based on self-reported color vision and

tested for colour vision deficits using the Ishihara test (Ishihara, 1987), one observer had to be

excluded based on the test results.

Seven of the observers completed the averaging task, completing on average 988 trials (range 280

- 1475) over a series of ninety minute session. Five of the observers completed the estimation task,

completing on average 2290 trials (range 1770 - 2613) over a series of sixty minute sessions.

4.2.2 Hardware setup for stimulus and task control

Visual stimuli were generated using MATLAB (The Mathworks, Inc.) and MGL (Gardner et al.,

2018a). Stimuli were displayed on a 22.5 inch VIEWPixx LCD display (resolution of 1900x1200,

refresh-rate of 120 Hz) and responses collected via keyboard. Output luminance and spectral lumi-

nance distributions were measured for the LCD display with a PR650 spectrometer (Photo Research,

Inc.). The gamma table for each display was dynamically adjusted at the beginning of each trial to
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linearize the luminance display such that the full resolution of the 8-bit table could be used to dis-

play the maximum contrast needed. The luminance spectra were used to compute a transformation

matrix from the CIELAB color space to the RGB output of the screen, such that the a* and b*

dimensions could be separately manipulated without changing the luminance (L*). Other sources of

light were minimized during behavior. Observers used a circular volume controller to submit their

responses in angle space (Powermate USB, Griffin Audio).

4.2.3 Eye tracking

Eye-tracking was performed using an infrared video-based eye-tracker at 500 Hz (Eyelink 1000; SR

Research). Calibration was performed throughout each session to maintain a validation accuracy of

less than 1 degree average offset from expected using a thirteen-point calibration procedure. Trials

were initiated by fixating the central cross for 300 ms and canceled on-line when an observers eye

position moved more than 1.5 degree away from the center of the fixation cross for more than 300

ms. During training and before data collection observers were excluded from further participation

if we were unable to calibrate the eye tracker to an error of less than 1 degree of visual angle or if

their canceled trial rate did not drop to near zero.

4.2.4 Experimental design

Averaging task

Stimuli consisted of two pairs of dot patches, to the left and right of a central fixation cross (0.5 x 0.5

deg). The dot patches were circular regions centered 8 degrees eccentric with a diameter of 10 deg,

covering from 3 to 13 deg along the horizontal axis and -5 to +5 deg along the vertical axis. Each

side had two dot patches was filled with moving dots (0.2 dots / deg2, per set, 0.3 deg diameter).

Dots within a patch were given an identical color and moved in the same direction at 3.5 deg / s.

Dots were ‘alive’ for 0.25 s before vanishing and reappearing immediately at a new random location.

One patch on each side was colored yellow and one blue (90 deg and 270 deg, in a* b* space).

On each trial in the averaging task observers were asked to report the average motion direction of

two dot patches (Fig. 4.1. Before each set of 20 trials observers were told how they would select the

two dot patches with the phrase “cue side” or “cue color” shown at fixation. Each trial was initiated

by the observer fixating the central cross for 0.5 s. This was followed by a 0.75 s cue, either a line

to the left or right or a miniature patch of colored dots. The feature instructed the observers about

which two dot patches they would need to average: either the two on the left, on the right, or the

two yellow or blue patches (one on the left and one on the right). A 0.75 s delay followed. During the

stimulus period the dot patches began moving coherently in random directions. The target patches

were constrained to be less than 135 degrees apart, to avoid confusion about the correct response

(when 180 degrees apart, two possible answers are correct). Observers were shown the stimulus for
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a variable duration of 0.25 to 0.75 s, then allowed unlimited time to rotate the response wheel and

make a response. Feedback was given by showing the actual average motion direction (see Figure).

Each trial was followed by a brief inter-trial interval (0 - 2 s, uniformly distributed).

Psychophysical distance

We report all of our results according to the normalized psychophysical distance between angles in

motion direction and color space, rather than the physical units. This is based on a recent result

showing that in working memory estimation tasks, correctly taking into account the psychophysical

distance is critical to correctly interpreting data (Schurgin, Wixted, & Brady, 2018). In brief, the

motivation for this scaling is that beyond a certain degree distance the “psychophysical” distance

becomes compressed. If you are trying to compare North and Northeast to East, it’s easy to tell

that NE and E are closer. But if you are trying to quickly compare N and NE to S, the task

becomes more difficult and there is little difference between that comparison and N and NE to

SW. The re-scaling sets the ‘distance’ between two angles to the normalized sensitivity according to

the comparison task just described. Without this re-scaling of distances it’s easy to mistake poor

sensitivity for a high lapse rate. The authors of Schurgin et al. (2018) as well as others (Bays, 2014)

convincingly demonstrate that in fact lapse rates are consistently low in difficult working memory

tasks. When observers appear to be guessing they are actually making low-probability choices with

high-confidence. For our purposes we approximated the psychophysical scaling by fitting a sigmoidal

function to data available in that paper:

d(x) = 1.1
x1.5

x1.5 + 351.5
(4.1)

This equation transforms the distance x between two motion directions or colors (in a* b*

angle space) to the normalized psychophysical distance d. Unlike degree distance, the normalized

psychophysical is set up such that an observer perceives the difference between 0 and 0.5 (0 and 31

deg, respectively) as equal to the difference between 0.5 and 1 (31 and 180 deg).

Estimation task

On each trial in the estimation task observers were asked to report about either the color or motion

direction of a single dot patch. Before each block of 40 trials observers were told which feature would

be reported with either the phrase “report color” or “report direction” appearing on the screen. Key

to the task was that although observers ultimately reported about only one dot patch they could

be cued to remember just that patch, or multiple patches, during a brief delay period. Each trial

consisted of the following sequence (Fig. 4.4): a fixation period (0.5 s), a pre-cue indicating which

patches needed to be memorized (0.75 s), an inter-stimulus interval (0.75 s), stimulus presentation

(0.25 s), a delay (1 s), a post-cue resolving which dot patch should be reported (0.75 s) and then
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unlimited time to report a response. The inter-trial interval was 0 - 2 s, sampled randomly from

a uniform distribution. The stimulus duration (0.25 s) was chosen based on the averaging task to

ensure that the task was difficult for participants but not impossible.

Estimation task data analysis

To analyze the results of the estimation task we fit a modified version of the “target confusability

competition” model from Schurgin et al. (2018). The model is based on the idea that noisy internal

channels are independently competing to represent a stimulus (Fig. 4.4a). On each trial the model

proceeds in two steps. First, the stimulus (or stimuli) are encoded by the channels, setting their mean

response. The tuning profile of each channel comes from the normalized psychophysical distance

(Eq. 4.1). As an example, the encoding step the response of a small set of channels (Fig. 4.4a)

to a stimulus with an angle of zero is shown (Fig. 4.4b). Each channels response is distributed as

follows:

Cθ(x) = N (µ = αd(x− θ), σ = 1) (4.2)

Where θ is the preferred orientation for that channel and d is Eq. 4.1. α is an amplitude

parameter which controls the scaling of the response and is the only free parameter in the model.

Once a stimulus is encoded by a set of responses the second step in the model is to find the

observer’s behavioral response by taking the maximum response over the channels. Because each

channel has independent normally-distributed noise, the likelihood of each channel winning can be

computed as the conditional probability of the channel exceeding all of the other channels. We

approximate this likelihood by numerically integrating the likelihood over channel responses, as

follows:

L(θ) =

∫ ∞
0

P (xθ = a)
∏
j 6=θ

P (xj < a)da (4.3)

Where P (x) is normally distributed, according to (Eq. 4.2). To compute the full likelihood

distribution we evaluate Eq. 4.3 at all values of θ.

Because the response calculation is analogous to signal detection the α parameter in Eq. 4.2 is

actually the sensitivity of the channel (i.e. d′). We fit this free parameter to the responses of each

observer by maximizing the likelihood of the observed data using Bayesian adaptive direct search

(Acerbi & Ma, 2017) in MATLAB.

We performed the model fitting step in such a way as to separate an observer’s bias (i.e. likelihood

of responding about the incorrect dot patch) from their sensitivity (i.e. their variability in response

quality, for a given dot patch). We modeled the observer’s trial-by-trial response as a combination

of a likelihood function for each stimulus patch (Eq. 4.3) with a set of bias parameters.
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L(θ) = βtargetLtarget + βsideLside + βfeatureLfeature + βdistractorLdistractor (4.4)

Where the terms target, side, feature, and distractor correspond to the dot patch that was

reported on the trial, the patch on the same side, the patch on the opposite-side with matched-

feature, and the patch on the opposite-side with mismatched-feature, respectively (Fig. 4.5). The

actual β values were constrained so that βtarget + βside + βfeature + βdistractor = 1, by calculating

them from three intermediate values:

βtarget = βs ∗ βf (4.5)

βside = βs ∗ (1− βf ) (4.6)

βfeature = (1− βs) ∗ (1− βd) (4.7)

βdistractor = (1− βs) ∗ βd (4.8)

Where βs, βf , and βd are each constrained to the range [0,1]. Setting βs = 1 and βf = 1 means

that the observer is always choosing the target and never incorrectly being biased to respond about

the other three dot patches (i.e. βtarget = 1).

In sum, we fit four sensitivity parameters (α) and three bias parameters (β) for the data set in

which observers selected by location or color (and reported motion direction) and separately for the

data set in which they selected by location or motion direction (and reported color).

4.2.5 Implementing attention in a channel linking model

The channels in the behavioral model described above have tuning which, by definition, matches

the behavior. In reality, the psychophysical scaling is a result of the readout process from neurons

tuned with much sharper functions (Bays, 2014, 2019). To explore how attention might change

the responses of neurons we explored how to connect sharp tuning functions, such as those neurons

might have, to the psychophysical space described above.

In this simulation we assumed that channels had a Von Mises tuning with a relatively sharp

profile (Fig. 4.7a). As before the response of each channel had independent Gaussian noise at the

time of stimulus encoding. To read out from these channels we computed:

θ̂ = arg maxθ
∑
i

riri(θ) (4.9)
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Fixation (0.5 s)

Cue (0.75 s)

Inter-stimulus interval (0.75 s)

Stimulus (var)

Delay (1 s)

Time (s)

Cue: color (yellow) Cue: side (right)

or

Response (inf)

Feedback (0.75 s)

ITI (0 - 2 s)

Figure 4.1: Motion direction averaging task. Observers were asked to select two out of four random
dot patches and average their motion direction. Observers initiated trials by fixating a central cross,
causing the two dot patches to appear with incoherent motion. A cue indicated whether they should
select the left or right patches (spatial selection) or the yellow or blue ones (feature-based selection).
After a brief delay the dot patches each began moving in random directions, before vanishing again
for a second short delay. Observers used a rotating wheel to report the average direction of motion
for the two dot patches they were asked to select. Feedback was given by indicating the true average
motion direction.

Where r is the response of each channel to the stimulus and r is the response of that channel in

the absence of noise.

To simulate different models of attention we either applied a gain to the noisy channel responses

or changed the set of mean channel tuning values. When ‘shifting’ the tuning it is necessary to also

shift the expected readout.

4.3 Results

We characterized human perceptual sensitivity to the average motion direction of two dot patches,

while asking observers to select the two patches either based on their common location or a shared

feature (Fig. 4.1. To measure perceptual sensitivity we recorded each observer’s estimation error

relative to the true average motion direction. We found that whether observers selected the two

dot patches by spatial location (left or right) or by feature (yellow or blue), their estimation errors
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Figure 4.2: Estimation error during the averaging task. A histogram displaying the average pro-
portion of responses at each distance from the true average motion direction (0) is shown, averaged
across observers. Selection by spatial location (i.e. averaging the two patches on the right or left) is
shown in yellow, and selection by color (i.e. averaging the two yellow or blue patches) is shown in
blue. The two inset plots show the same histogram but in a circular space, with a red dashed line
indicating the true average. Note that the x-axis has been re-scaled from degrees to psychophysical
distance, see Methods.

remained nearly identical (Fig. 4.2). Consistent with the task design we found that giving observers

a longer stimulus (Fig. 4.3a) or a smaller angle difference between the two dot patches (Fig. 4.3b)

improved sensitivity slightly.

The averaging task demonstrates that if differences in selection exist they are small and may

depend in specific ways on the context of particular tasks. For example, observers might be biased

in different ways to the irrelevant dot patches according to how they selected from the stimulus. We

refers to such errors as bias, while referring to the precision of reports as sensitivity. We next sought

to design a task which could differentiate between changes in bias (which dot patch was reported)

and sensitivity (how precise the reports were).

The estimation task uses the same stimulus as the averaging task, but we now asked observers to

recall the properties of a single dot patch (rather than the average of two). Observers were cued in

different ways to force them to select the stimulus according to different features. To set a baseline

for performance we cued observers to the exact target they would later report (Cue 1, Fig. 4.4). In

the most difficult case (Cue 4: Distributed, Fig. 4.4) observers memorized the directions of all four

potential targets and were only post-cued after a brief delay about which target should be reported.

In the two critical selection conditions observers were asked to memorize either the motion directions

of the two patches on the left or right (Cue 2: Side, Fig. 4.4) or the two yellow or blue patches (Cue

2: color, Fig. 4.4), in the same manner as in the averaging task. In both of these conditions a Post-

Cue was used to reveal which of the memorized dot patches had to ultimately be reported. Note

that we had observers perform this task in two ways: once selecting by either location (left/right) or

color (yellow/blue) and reporting motion direction, as shown in the figure, but also while selecting

by either location or motion direction (up/down) and reporting color (see e.g. Fig. 4.6).

To understand the data we collected from the estimation task we needed to decompose bias
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Figure 4.3: Averaging difficulty is controlled by stimulus duration and angle distance between
patches. (a) The average estimation error across observers is shown for a median split of the
angle difference between the two dot patches that were averaged. (b) As in (a) for a median split of
stimulus duration.

from sensitivity. To do this we employed a simple model of perceptual sensitivity which fits two

parameters for each condition (Fig. 4.5, see Methods for details). The model encodes the stimulus

into a set of independent channels with Gaussian-distributed noise (Fig. 4.5a). A single parameter

scales the responses of these channels to fit the sensitivity of an observer (Fig. 4.5b). To obtain the

likelihood of an observer’s responses the maximum is taken over the channel responses, resulting in

a likelihood distribution (Fig. 4.5c). To decompose sensitivity from bias we allowed the channels to

separately encode each of the dot patches with a separate sensitivity, then weighted those likelihood

functions to create a mixed distribution from which actual trail-by-trial responses would be sampled

(Fig. 4.5e). We fit all seven parameters of this model (four β and three d′ parameters) to maximize

the likelihood of predicting the responses of each observer.

We compared three conditions in the estimation task, using the Cue 1 condition as a baseline for

performance (Fig. 4.6 and found that all of the variability in performance between conditions was

accounted for by the bias parameters. Our main goal was to see whether during the two different

forms of selection (Cue side and Cue feature) a difference in sensitivity to the target dot patch

emerged. We did not find this to be the case, confirming the finding from the perceptual averaging

task (left panels, orange curves are all identical, Fig. 4.6b-d). A direct comparison of these sensitivity

parameters between conditions and against the same parameter in the Cue 4 condition showed no

differences (Fig. 4.6e) between forms of selection, but a substantial advantage to selecting two

patches compared to selecting only four.
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Cue 4: distributed
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Figure 4.4: Estimation task. The task is shown where the cues were side (left or right) and colors
(yellow or blue) and observers reported motion direction, but we also ran the reverse where the
cues were side (left or right) and motion direction (up or down) and observers reported the color.
Observers began each trial by fixating a central cross (Fixation). A pre-cue (Cue) was then shown
to indicate to observers which of the four dot patches they should memorize. A brief delay (Inter-
stimulus interval) gave observers time to prepare. The dots then became colored and coherent for a
variable duration (Stimulus). Finally after another brief delay (Delay) observers were shown a second
cue which was used to disambiguate the target stimulus (Post-cue). For example, if the observer
was cued to remember the two stimuli on the right, the post-cue might be blue to indicate that of
the two stimuli memorized only the motion direction of the blue dot patch on the right should be
reported. Observers were given unlimited time to respond (Response) and received feedback before
the next trial (Feedback).

While we found no differences in the sensitivity parameters we did find substantial differences

in how biased observers were to report about the incorrect dot patches in different conditions (right

panels, Fig. 4.6b-d). When remembering all four dot patches (Cue 4) we found that observers

were only able to report the direction of the correct dot patch half the time. They were nearly

equally likely to confuse the patch we asked them to report with the patch on the same side. A

small percentage of the time (10.5%) observers reported about the feature matched stimulus on the

wrong side. Performance improved substantially in both conditions where observers were cued to

remember just two of the four dot patches. In the Cue side conditions we found that observers were

only biased to report about the dot patch on the same side. In the Cue feature conditions we found

that observers occasionally reported about all of the irrelevant dot patches with some frequency,

indicating a difference in bias due to the form of selection.
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Figure 4.5: Estimation task model. The model of the estimation task is based on an existing model of
working memory estimation by Schurgin, Wixted, and Brady (2018). (a) In the model independent
channels encode the stimulus with a response profile defined by the psychophysical distance of each
channel’s preferred response and the stimulus. The channel responses are normally distributed with
σ = 1. (b) A free parameter in the model controls the sensitivity of the channels (d′), which acts
as a multiplicative gain on the amplitudes of each channel response. (c) To read out an estimate
of the stimulus angle an observer takes the maximum response over the channels. We show here
the full likelihood distribution over all angles, computed numerically (see Methods). (d) The same
distributions in (c), the likelihood of response for different values of d′, are shown in circular space.
(e) To estimate the trial-by-trial likelihood of responses in the estimation task we fit a separate
sensitivity parameter for each dot patch, indexed by its relative position to the reported target
patch on that trial. The four patches are the reported patch (orange, target), the patch on the
same side (blue, side), the patch on the opposite side with the same feature (pink, feature), and
the patch on the opposite side with the mismatched feature (green, distractor). To decompose bias
from sensitivity we weighted the likelihood distributions by β weights for each condition. These β
weights were constrained to sum to 1 (see Methods). Once summed, these define a trial-by-trial
likelihood distribution for each observer. Note that for clarity of presentation we are showing the
task variant in which colors are reported, while Fig. 4.4 shows the variant in which motion directions
are reported.
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Figure 4.6: Performance in the estimation task. (a) Three of the conditions used in the experiment
are shown for trials where selection was performed by the direction of motion and the report was
the color. Opacity is used to indicate which dot patches are memorized in each condition and to
emphasize that the response in all conditions is identical (reporting the color of a single dot patch).
In Cue 4 trials an observer memorized all four colors shown and was then asked to report the color of
a single dot patch, e.g. the dots moving upward on the left side (orange arrow, highlighted). In Cue
2 trials the observer either memorized the colors on one side (Cue side) and was post-cued about
the direction, or memorized two dot patches moving in the same direction (Cue direction) and was
post-cued about the side. (b) The model estimate of sensitivity for each of the four dot patches
is shown separated from the probability of reporting about each dot patch. Observers reported
about the distractor dot patch less than 2% of the time. (c-d) Conventions as in (b) for the two
cue 2 conditions. (e) Confidence intervals for the target dot patch d′ parameter are shown for each
condition.
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Figure 4.7: Implementations of attention in a hypothetical channel model. (a) Examples are shown
of how neuron responses might change during attention. (b) Response likelihoods are shown for the
different attention models, see Methods for model details.

In previous chapters we explored different possible models for how attention could be imple-

mented in sensory representations or their readout. Here again we wanted to explore possible

implementations for how neural selection might result in the behavioral changes we observed. An

important step toward this goal is to describe a computational linking model which can connect the

perceptual measurements described here with measurements of cortical activity. We describe here

such a model and demonstrate that it can in theory account for the kinds of shifts in sensitivity and

bias that could occur in our task (Fig. 4.7).

A plausible linking model has to have channels that are tuned according to functions with thinner

response profiles than those described by the psychophysical scaling function (Eq. 4.1, see also Fig.

4.5a). Ultimately the size and number of these channels would need to be constrained by neural data.

We modeled a small number of channels (128) with small variance (circular Von Mises distributions

with κ = 20). To simulate read out from such a population during an estimation task we proceeded

in two steps. First, we simulated the response to a stimulus by sampling from each channel’s response

to the stimulus angle, with additive Gaussian noise. Then, to decode the angle stored in the channels

we compared the sampled responses to the ideal mean responses for every channel for every possible

stimulus angle (Eq. 4.9, i.e. we computed the dot product of the sample vector and the mean

channel response vector for each θ). The maximum of this readout step was chosen as the response

for that simulated trial. We repeated this 1,000× and then plotted the distribution of response

angles relative to the true stimulus angle (Fig. 4.7b).

Changes in sensitivity in such a model can be the result of different manipulations in the channels,

such as multiplicative gain or shifts in tuning. Using the simulation we showed that a multiplicative

gain or a shift in tuning can both result in changes to the distribution of estimated angles (blue and

orange lines, Fig. 4.7a and b). Combined with the estimation task we therefore believe that this

approach provides a computational linking model to connect measurements of cortical representation
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to the behavioral measurements. When observers went from memorizing four dot patches to two,

whether by location or feature, their perceptual sensitivity improved substantially (Fig. 4.6e).

We expect that enhancement to be the result of both changes in sensory representation but also

potentially changes in the readout (see Chapter 3). Combining this computational linking model

with measurements of cortical activity will make it possible to evaluate whether the scale of observed

changes in cortical representation are sufficient to account for the behavioral effects of selective visual

selection.

4.4 Discussion

Using perceptual averaging and estimation we have demonstrated that selection by spatial location

and by feature both enhance perceptual sensitivity by a similar amount. Although selection by

different features does not manipulate sensitivity we did find that differences in task performance

were well accounted for by changes bias. This showed that selection changes how likely observers

were to report about the wrong dot patches, but did not change the strength of their encoding of the

dot patches. These results make a compelling case for the hypothesis that selective visual attention

has a shared neural implementation across different visual features. Our results also confirm that

selection by spatial location may occur prior to selection by other features, paralleling our knowledge

of the physiological structure of early visual cortex.

Many early experiments that compared different forms of visual selection came to the conclusion

that spatial location is primary in some way (Liu et al., 2007a; Treisman & Gelade, 1980; Tsal &

Lavie, 1988; Snyder, 1972; Hillyard & Münte, 1984; Harter et al., 1982; Soto & Blanco, 2004). In

general, this idea that spatial selection precedes feature-based selection matches cortical physiology.

Early visual cortex is organized retinotopically (Wandell et al., 2007) and the earliest visual areas

are sensitive to specific visual features at particular retinotopic locations (Kuffler, 1953; Hubel &

Wiesel, 1959, 1962). The progression from local simple features to more global complex features

provides one explanation for the pattern of bias which we observed. We found that when selecting

by spatial location observers were able to easily ignore the dot patches in the other visual field,

consistent with an implementation preventing those dot patches from being fully processed. But

to select dot patches by feature observers were required to not select by location, perhaps allowing

processing to continue on those irrelevant dot patches. This possibility might explain why observers

were sometimes biased to the feature mis-matched dot patches on the same and opposite side even

when selecting by feature. Despite this bias, observers were nevertheless equally sensitive, i.e. their

responses were just as variable, when selecting by location or by feature.



Chapter 5

Summary and conclusions

Together, these results demonstrate that human selective visual attention is made up of multiple

computational components which are shared across different forms of sensory selection. These find-

ings were possible through the use of computational linking models which make hypotheses about

the connections between neural representation and perception explicit and testable (Barlow, 1972;

Brindley, 1960; Cohen & Maunsell, 2010; Newsome et al., 1989; Pestilli et al., 2011; Hara & Gardner,

2014; Gardner, 2015).

In Aim 1 I sought to quantify the extent to which cortical changes during selective visual at-

tention could account for perceptual changes. We chose to study the visibility of motion for this

purpose. Motion visibility can be controlled by several different perceptual parameters: contrast,

coherence, and duration. Having multiple stimulus properties which all manipulate the same percep-

tual property makes motion visibility an excellent tool to investigate how cortical changes might be

connected to the perceptual enhancements during selective attention. Prior to this project nobody

had laid out a full framework for how motion visibility is represented in human visual cortex. The

first step was therefore to build a framework for this purpose.

I next measured how the sensory representation of motion visibility changed during directed

attention and demonstrated that these changes were insufficient to account for perception. We

validated that a linking model of motion visibility perception could be built, extending an existing

linking model of contrast discrimination (Boynton et al., 1999). We then measured how sensory

representations changed and, passing these through the linking model, showed that the scale of

changes were too small to account for perception. Based on these observations we suggested that a

flexible readout must change how signals are gated from sensory cortex into decision-related regions.

The findings in Aim 1 are consistent with the hypothesis that a substantial amount of the

processing during sensory selection occurs outside of the areas thought to primarily represent sensory

information. This, in turn, suggests that these computations might be largely invariant to the kind

of information they receive. Put another way, selection that is implemented by flexible readout
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should be similarly strong or efficient regardless of the feature selected for. In Aim 2 we sought to

validate this prediction by directly comparing spatial and feature-based attention. I developed two

variants of an estimation task for this purpose, one using perceptual averaging and a second working

memory. Each task was designed to measure how the strength of sensory selection changes according

to the feature being selected. I showed with these tasks that there are only subtle differences between

spatial selection and feature-based selection whether by motion direction or by color. Importantly,

all of these small differences were well accounted for by errors in bias and not changes in sensitivity.

This suggests the fascinating possibility that different selection behaviors are all implemented by a

common selection mechanism.

Bringing the findings in this dissertation together, these results hint at the possibility that

selection is in large part implemented during the readout stage from sensory representation to

a context-dependent one. What then is the role of small changes to the sensory representation,

which clearly occur during attentional behaviors? I would suggest that these changes to sensory

representations might play a role in selection, but they would be complimentary to this readout

process. Much of the recent work on attention aligns with this idea that attention is a two-step

process in which sensory changes work together with the readout process to improve perceptual

abilities (Pestilli et al., 2011; Ruff & Cohen, 2018; Snyder et al., 2018; Rabinowitz et al., 2015).

This hypothesis appears to echo the ideas of a late selection account of selective attention

(Deutsch & Deutsch, 1963), but they differ in crucial ways. In the late selection theory sensory

processing runs to completion irregardless of an organism’s behavioral goals. This matches with the

results in Chapter 3, where I showed that observers retain information about unattended features.

This would also be consistent with similar results for visual processing of faces and scenes (Li et al.,

2002; Reddy, Reddy, & Koch, 2006). But in each of these cases the remaining perceptual represen-

tations are impoverished. Even if processing is going to ‘completion’, the sensory representation has

degraded considerably by the time the readout process can be shifted to it. In contrast to a late

selection account, what I have shown here is more in line with the idea of a continuous or graded

selection process.

One explanation for why sensory selection might occur continuously during sensory processing

and readout is that this balances the efficiency of processing against behavioral flexibility. Attention

is often suggested to be part of a solution to the high cost of neural activity (Lennie, 2003). Shifts in

tuning which allocate additional processing to attended features would seem to correspond to such

a theory. But to effect such a change requires intervening on the sensory representation directly

at the cost of lost selectivity for unattended stimuli (Mack & Rock, 1998). These feature-specific

computations are also potentially complex: is the visual cortex structured in such a way that any

arbitrary feature can be enhanced? One way to reconcile the need for efficiency against the com-

plexity of implementation is to assume that attention is not a static computation, but one that is

modified with experience. Give sufficient time and consistency in a task, it’s possible that the human
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observers in Chapter 3 might have been able to learn a sensory-change implementation to solve that

task. In theory such an implementation should be more efficient compared to always representing

the entire stimulus and then selecting out the important information at the last step. One potential

way to study this further would be to compare attentional behaviors in animals, especially mice and

non-human primates, with humans. We know that each of these model organisms learns in vastly

different ways (Birman & Gardner, 2015). Finding differences in their sensory selection behaviors

may clue us into the different ways in which selection can be implemented in the brain.
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