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A flexible readout mechanism of human sensory
representations
Daniel Birman 1 & Justin L. Gardner 1

Attention can both enhance and suppress cortical sensory representations. However,

changing sensory representations can also be detrimental to behavior. Behavioral con-

sequences can be avoided by flexibly changing sensory readout, while leaving the repre-

sentations unchanged. Here, we asked human observers to attend to and report about either

one of two features which control the visibility of motion while making concurrent mea-

surements of cortical activity with BOLD imaging (fMRI). We extend a well-established

linking model to account for the relationship between these measurements and find that

changes in sensory representation during directed attention are insufficient to explain per-

ceptual reports. Adding a flexible downstream readout is necessary to best explain our data.

Such a model implies that observers should be able to recover information about ignored

features, a prediction which we confirm behaviorally. Thus, flexible readout is a critical

component of the cortical implementation of human adaptive behavior.
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Humans can flexibly attend to different aspects of the
environment when their goals require it. This can be
operationalized by asking human observers to report

about one feature of a visual stimulus while ignoring other fea-
tures. Such context-dependent judgments could be supported by
a cortical implementation which increases sensitivity or selectivity
for the sensory representations of reported features while sup-
pressing others. A second and potentially complimentary imple-
mentation is to maintain stable sensory representations while
flexibly changing the downstream readout of these.

A great deal of evidence exists for the former possibility of
changing representations to accommodate behavioral demands.
Behavioral manipulations of spatial attention1–4, feature-based
attention5–11, and stimulus expectations12,13 all have been asso-
ciated with changes in sensory representations. These changes
may occur very early in the visual hierarchy14 and take the form of
changes in sensitivity10,11,15,16, shifts in feature selectivity1,4,17–21,
increases in baseline response22–27 useful for efficient selection3,28,
and changes in the structure of stimulus-driven and noise
correlations2,29.

However, flexible readout rather than change in sensory
representation can be a behaviorally advantageous implementa-
tion of task demands. Although changing sensory representations
can be beneficial, there can be associated behavioral costs to
suppressing ignored features30–32 when these are actually relevant
to behavior. In many dramatic demonstrations33,34, observers
have been made blind to salient events when reporting about
other aspects of a visual scene. This suggests a potential advantage
to maintaining stable sensory representations and using flexible
sensory readouts to enable adaptable behavior35–37.

To establish that a change in sensory representation between
different task conditions is large enough to explain perceptual
behavior, we can turn to linking models. Quantitative linking
models3,28,38–42 connect measurements of cortical activity to
behavior by modeling the presumed process by which sensory
activity gives rise to perceptual behavior. Such linking models are
explicit hypotheses and can be falsified if they are unable to
quantitatively link change in sensory representations to behavior
across different task conditions.

Here we use a linking model to study human reports of motion
visibility and to understand whether sensory change or flexible
readout implement this behavior. We first establish that observers
can independently report about either the contrast (luminance
difference between dark and bright dots) or motion coherence
(percentage of dots moving in a coherent direction) of
random dot patches while ignoring the other feature. We then
extend a well-established linking model of human contrast
perception3,28,43–47 to account for behavioral performance during
these tasks. Because in individual cortical areas the response to
motion visibility is mixed48, we allow the model to weight reti-
notopic areas according to their sensitivity to the two features.
The critical step to understand behavioral flexibility was to
measure blood oxygen-level-dependent (BOLD) signal while
observers performed each discrimination task. If sensory repre-
sentations changed enough, then a linking model with a fixed
readout of sensory areas should be sufficient (i.e., that used the
same weighting of cortical responses for both tasks). Imple-
menting such a fixed-readout model shows that sensory
changes alone are insufficient in magnitude to explain perception.
Instead, in addition to the sensory change, a change in readout
between different task conditions is necessary (i.e., a flexible
readout). A benefit of flexible readouts is that sensory repre-
sentations can retain information about the unattended feature.
In line with this, we show that observers can re-map their reports
unexpectedly.

Results
Perceptual sensitivity to motion visibility. We characterized
human perceptual sensitivity to the contrast and coherence of
moving dots while observers had to report exclusively about one
feature and ignore the other. We measured observers’ just-
noticeable differences (JNDs) in image contrast or motion
coherence between a pair of simultaneously presented random
dot patches in a two-alternative forced choice task (Fig. 1). Each
block of trials began with either the word “contrast”, indicating
that observers should report which dot patch had higher contrast
while ignoring differences in coherence, or “motion”, indicating
the opposite. Each trial consisted of a 0.5-s base increment in the
contrast and coherence of both dot patches (at all other times, the
dot patches were kept visible at 25% contrast and 0% coherence).
In addition to this base increment, a small additional increment
near perceptual threshold was added to one side independently
for each feature. Therefore, for every trial regardless of cueing
condition there was a difference in both features between the two
dot patches and each patch was equally likely to contain the
additional increment. After stimulus presentation and a brief
delay, observers reported which side had the higher magnitude of
the cued feature and received feedback.

Observers were able to report about each motion visibility
feature independently. Collapsing across observers and base
stimulus strengths, we found that observers were sensitive to the
feature they were asked to report (dark orange, Fig. 2a, and dark
purple, Fig. 2b) but insensitive to the features they were asked to
ignore (light purple and light orange, Fig. 2a, b). The
psychometric functions (circle markers in Fig. 2a) were well fit
by cumulative normal distributions (not shown, average cross-
validated r2pseudo = 87.7%). This suggests that observers’ decisions
were consistent with a signal detection process in which two
sensory representations were compared subject to Gaussian noise.
Separating out sensitivity by base stimulus strength, we observed
a proportional increase in JNDs (Fig. 2c, d) reminiscent of
Weber's law. Weber’s law states that the slope of this relationship
should be 1 on a log–log axis but we found slopes <1 for contrast,
0.44, 95% confidence interval (CI) [0.41 0.50], consistent with
previous studies3,49,50, and 0.81, 95% CI [0.78 0.85] for coherence.
Fitting a Weibull function on a subject-by-subject basis for base
contrasts 32.5, 40, 55, and 85%, we found JNDs in contrast
(Fig. 2c) to be 4.6%, 95% CI [3.8, 5.5], 4.8%, 95% CI [3.9, 5.8],
5.5%, 95% CI [4.9, 6.2], and 7.5%, 95% CI [5.3, 9.8], respectively.
For base coherences 15, 30, 45, and 60%, we found JNDs in
coherence (Fig. 2d) to be 14.2%, 95% CI [12.9, 15.5], 17.7%, 95%
CI [14.3, 21.1], 20.2%, 95% CI [15.1, 25.3], and 21.3%, 95% CI
[16.7, 25.9], respectively. Note that for contrast the base stimulus
strengths are reported as the absolute value and not the relative
increment from the 25% contrast and incoherent motion that was
shown continuously throughout the experiment.

Changes in cortical representation during task performance.
We measured BOLD signal in retinotopically defined visual areas
and found small changes in sensory responses when observers
switched between reporting contrast and coherence (Fig. 3). Ten
of the observers who performed the behavioral experiments
repeated the task in the magnet. We used these measurements to
examine how the contrast and coherence responses changed,
either by multiplicative gain or additive offset, in each visual area
(see “Methods”). For a majority of subjects, we found that when
reporting about contrast, compared to reporting about coherence,
the response to contrast in cortex showed a multiplicative gain
(Fig. 3a). The average increase in αcon (Eq. 4) over areas and
observers was 0.13% signal change/unit contrast, 95% CI [0.07,
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0.19]. The direction of this effect was not always consistent. In V1
8/10 observers showed an increase; for V2 6/10; V3 7/10; V4 7/10;
V3A 7/10; V3B 7/10; V7 5/10; MT 6/10. For the coherence
response, we found no consistent change in the slope of the
response function when reporting about coherence (Fig. 3b). The
average over areas and observers was −0.02 % signal change/unit
coherence, 95% CI [−0.08, 0.04]), though some individual areas
like MT showed an increase. These changes were inconsistent
across observers, in V1 6/10 observers showed an increase in the
linear slope of the coherence response; V2 6/10; V3 6/10; V4 6/10;
V3A 4/10; V3B 5/10; V7 6/10; MT 6/10. In some linking models,
additive offsets have been shown to account for the perceptual
benefits of selective attention3,28. We found that reporting about
the stimuli, rather than passively viewing them, led to an additive
offset in most visual areas (Fig. 3c). Average increase in αtask
(Eq. 6) over areas and observers compared to passive viewing was
0.36% signal change, 95% CI [0.30, 0.44]. Additive offsets were
slightly larger during the contrast task than the coherence task
(Fig. 3c). Averaged over areas and observers this effect was a
modest 0.07% signal change, 95% CI [0.01, 0.14]. In summary, we
measured small changes in sensory response between task con-
ditions and found that in some cortical areas contrast sensitivity
increases when subjects perform the contrast task and coherence
sensitivity increases when subjects perform the coherence task.
While these changes are in the right direction to underlie task
performance, a formal linking model is required to determine
whether they are large enough to account for perceptual behavior.

Linking model between cortical representation and perception.
We set out to build a linking model that could quantitatively
predict behavioral performance from measurements of cortical
sensory representation (Fig. 4). Once validated, such a model
could then be used to assess whether the sensory changes we
measured were large enough to explain behavioral performance
in the task conditions. Linking models have been built for con-
trast discrimination tasks by assuming that higher contrast is
detected by comparing the magnitude of cortical responses
evoked by different stimuli, subject to some noise3,28,43–46.
Behavioral sensitivity is determined by the ratio of response dif-
ference to the standard deviation of the noise, as in the classic
signal detection measure d’. In our task, cortical responses are the
result of stimuli that differ both in contrast and coherence. The
linking model therefore needed to be able to differentiate which
feature caused a difference in response. We reasoned that this
could be accomplished by properly weighting visual areas
according to their sensitivity to each stimulus feature. Our model
took the form of a probit regression51 in which the difference in
weighted response of visual areas to the two stimuli was com-
puted and passed through the cumulative normal distribution to
predict the probability of different choices (Fig. 4, see “Methods:
Linking model” for full description).

Before evaluating such a model on the measurements of
cortical activity during task performance (Fig. 3), we wanted to
validate that such a linking model could in principle account for
contrast and coherence discrimination. In previous work, we
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Fig. 1 Behavioral task. Observers discriminated which of two random dot stimulus patches had higher contrast or coherence in different blocks of trials.
Each block began with the word “contrast” or “motion” indicating that observers should report about contrast or coherence, respectively, and ignore the
other feature. Between trials (Inter-trial interval) and during all but the Stimulus segment, the dot patches were presented at 25% contrast with incoherent
motion. On each trial, both dot patches increased by independent base increments of contrast and coherence (+7.5, +15, +30, or +60% contrast; +15,
+30, +45, or +60% coherence) for 0.5 s (Stimulus). In addition, for each feature one side was chosen independently to have an additional threshold-level
increment, determined by a staircasing procedure. For regular trials, after a 0.5–1-s period (Delay), observers were asked to report which side contained the
additional increment in contrast or coherence (Response) and were given feedback (Feedback). In a subset (Catch trials) of runs (2/5) on rare trials (1/7),
the delay period was followed by a second cue (Post-cue), the letter “M” or “C”, indicating that the observers should prepare a response about the un-cued
feature. Additional time was given to observers to make these decisions (post-cue period of 1.5 s, response window of 2.5 s) and observers did not receive
feedback on catch trials
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published measurements of contrast and coherence response in
cortex while observers passively viewed the same random dot
stimuli used here48. These measurements were used to quantify
the shape of contrast and coherence responses across retinoto-
pically defined visual areas using functional forms
(Naka–Rushton for contrast and a saturating exponential form
for coherence, see Eqs. 4 and 5). These passive-response data
showed, for example, that V1–V4 are relatively more sensitive to
changes in image contrast, whereas MT is more sensitive to
changes in motion coherence. Using the functional forms
measured during passive viewing, we simulated the trial-by-trial
response of eight visual cortical areas, V1–V3, V4 (hV4), V3A,
V3B, V7, and MT (hMT+), and modeled sensory readout on
each trial as a task-dependent linear weighting of the population
responses (Fig. 4). This resulted in a scalar response for the left
and right stimulus patches (∑right, ∑left) on each trial. The
observer’s decision about which side had the higher cued feature
was modeled as a comparison between these two scalar responses
(∑right–∑left) summed with a side bias (βbias). This scalar decision
variable was subject to Gaussian noise as implied by the
cumulative normal of the probit link function. We fit the
parameters of the linking model using maximum likelihood
estimation for each observer (8 cortical area weights × 2 task
conditions+ 1 bias parameter= 17 total parameters) using the
average population response function parameters from Birman

and Gardner48. For reference, these parameters describing
sensitivity in different cortical areas are reported in “Methods”.

We found that the linking model based on the passive viewing
BOLD data was a good fit for the behavioral measurements
(curves, Fig. 2), capturing both the shape of the psychometric
functions and the increase in JNDs with increasing base stimulus
strength. To evaluate each model’s goodness-of-fit, we examined
Tjur’s coefficient of determination (CD), a measure intended to
be interpreted similarly to r2 for models of binary decisions52. To
compare models, we computed cross-validated log-likelihood
ratios (see “Methods: Model comparison”). We found across
observers an average CD of 0.44, 95% CI [0.42, 0.45] reflecting
that the model captured the sensitivity of human observers to
differences in visibility across both task conditions (curves,
Fig. 2a, b) as well as the reduced sensitivity at increasing base
stimulus strength (curves, Fig. 2c, d). The fits shown are for the 8-
area model, but we also tested a model with only the two areas
with the highest contrast and coherence sensitivity, V1 and MT (2
cortical area weights × 2 task conditions+ 1 bias parameter= 5

total parameters). We found a similarly good fit, log L2
L8

� �
¼ 7:38,

95% CI [−3.09, 32.78]. The average CD of the 2-area model was
also 0.44, 95% CI [0.43, 0.45].

The linking model fit weights according to the relative
sensitivity of each cortical area to contrast and coherence (Fig. 5).
In the eight-area model, the contrast task weights (x axis, Fig. 5a)
are proportional to how sensitive each area is to contrast relative
to coherence: V1–V4 have positive weights, while only MT was
given a negative weight. The negative weight on MT counteracts
sensitivity to coherence in V1–V4 and ensures the linking model
was insensitive to coherence when reading out contrast. The
weights for the coherence task (y axis, Fig. 5a) behaved similarly,
with MT getting the largest positive weight and V1 a slight
negative one. A similar pattern was observed for a model with
only areas V1 and MT (Fig. 5b) but with less negative weighting
in the coherence readout.

Using model comparison, we validated our linking model
assumptions that sensory noise is additive and that observers had
no dependency on choice history. Models based on single-unit
variability often assume a Poisson-like noise53. We modeled an
additive noise component because our model is based on
population activity for which independent single-unit variability
would be expected to average out. This choice of additive
Gaussian noise was important. A model using Poisson noise,
which increased with the average stimulus response magnitude,
did not fit the data (Fig. 6). On average across observers, the
additive model was a better fit compared to the Poisson model,

log Ladditive
LPoisson

� �
¼ 43:58, 95% CI [18.84, 77.93] (Fig. 6c) and

improved CD by 0.01, 95% CI [0.00, 0.02] (Fig. 6d). A number
of studies have found that observers performing psychophysical
tasks are biased by previous choices even when those choices are
uninformative for the current trial54,55. We tested for possible
biases due to choice history (see “Methods”) but found that
including these additional fit parameters caused the cross-
validated log-likelihood to deteriorate, suggesting over-fitting,

log
Loriginal

Lstay=switch

� �
¼ 3:66, 95% CI [0.31, 9.08]. Thus, model compar-

ison was able to validate that choice history effects were negligible
and that noise was best assumed to be additive rather than
Poisson.

Using the linking model to test fixed vs flexible readout. Having
verified the linking model based on passive viewing data, we now
asked whether the small changes in sensory representation which
we measured during task performance could account for how
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Fig. 2 Perceptual sensitivity to contrast and motion coherence and fit of
validation linking model. a Contrast task. The markers plot the average
probability across observers and base stimulus strengths of indicating that
the right dot patch had higher contrast or motion coherence while
performing the contrast task, as a function of the difference in contrast
(orange) or coherence (blue) between the two patches. Curves plot the
predictions of the eight-area linking model using measurements made
during passive viewing. These were fit to each individual observer’s
behavioral data with a flexible readout, therefore fitting each task
separately. b Coherence task, conventions same as a. c Markers plot the
just-noticeable difference for contrast during that task estimated from a
Weibull function fit for each base stimulus strength, averaged across
observers. Curves indicate the average prediction of the eight-area linking
model across observers. d Same as c for the coherence task. All markers
indicate the mean and error bars the 95% confidence interval across
observers. Curves indicate the mean model prediction across observers and
shaded areas the 95% confidence intervals. Some error bars are hidden by
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perceptual sensitivity changed when observers switched task. If
sensory changes were sufficiently large, then the readout could be
fixed between task conditions. Such a fixed-readout model would
only require a single set of cortical area weights with changes in
perception accounted for only by changes in sensory responses.

As a baseline for comparison, we first fit the fixed-readout
model on the sensory responses measured during passive viewing.
By definition, there are no sensory changes between task
conditions so this passive-response fixed-readout model can only
produce behavior that is intermediate between the two tasks. That
is, it is sensitive to both contrast and coherence (Fig. 7a, orange/
yellow contrast curves and blue/purple coherence curves are not
flat) and cannot switch sensitivity between the two tasks (Fig. 7a,
curves for left and right panels are identical). The CD and
likelihood of the passive-response fixed-readout model provide a
lower bound on the possible explainable variance (Fig. 7d, e).

Fitting the fixed-readout model to sensory responses measured
during task performance showed that, while changes in sensory
response could account for a substantial amount of the behavioral
performance, the changes were insufficiently large to fully explain
task performance. This task-response fixed-readout model
achieved a better fit of the behavioral data than the passive-
response fixed-readout model (Fig. 7d, e, compare magenta and
blue points) thus quantifying how much the sensory changes
reported above can account for behavioral performance. Indeed,
the task-response fixed-readout model was better able to capture
differences in behavior between the contrast and coherence task
(Fig. 7b, compare curves for left and right columns). However, the
linking model failed to completely capture the ability of subjects
to change their perceptual sensitivity to contrast and coherence
between the two tasks. In the contrast task, the contrast sensitivity
curve (orange, Fig. 7b) does not match the sensitivity of the
observers and the model predicted a weak bias for coherence
(light purple, left panel of Fig. 7b) that the subjects did not show.
In the coherence task, the coherence performance was reasonably
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well matched (purple curve, right panel), but the model predicted
strong bias from contrast (orange curve).

Rather than rely only on changes in sensory representation
between tasks, a linking model that could read out responses from
visual areas differently between tasks was better able to fit the
behavioral performance. We tested this task-response flexible-readout
model by allowing the weights for different visual areas to change
between tasks while still using the sensory responses measured during
task performance. This model provided reasonable fits to the
behavioral data (Fig. 7c), capturing the performance during the
contrast task (left column), although it did predict slightly more bias
to contrast during the coherence task than the observers displayed
(orange curve, right panel). Because the fixed-readout and flexible-
readout models had different numbers of parameters (fixed readout
= 9 parameters, flexible readout= 17), it was critical to evaluate the
models with a cross-validated metric. We found that for the task-
response measurements the flexible-readout model was a far better fit

than the fixed-readout model (Fig. 7f, g), log LFlexible
LFixed

� �
¼ 60:16, 95%

CI [44.90, 77.75], difference in CD, 0.06, 95% CI [0.04, 0.07]. Note
that observers who we measured physiology for (black bars, Fig. 7f, g)
show a larger improvement in model fit compared to the other
observers, which we attribute to an effect of increased training (see
Supplementary Note 1).

As additive offsets have been used with a fixed readout to
explain differences in behavioral performance with spatial
attention3,28, we also tested an efficient selection model that
weights responses according to their magnitude. We found that
this model could not explain the behavioral performance
(Supplementary Note 2).

Behavioral evidence for a flexible readout. One advantage to
keeping sensory representations relatively stable is that observers
can maintain information about unattended features. To measure
whether observers could recall unattended information, we
included “catch” trials in the behavioral task. In catch trials,
observers were shown a post-cue after stimulus presentation,
which indicated that they should report about the un-cued feature
(bottom time line, Fig. 1). Observers made these reports despite
the stimulus having already been presented and despite having
already had 0.5 s to prepare their response for the main task. We
were able to ensure observers did not split their attention by
keeping the main task at perceptual threshold, making catch trials
rare, and not providing feedback (Supplementary Note 3).

During catch trials, we found that observers were less sensitive
to the un-cued motion visibility features compared to when they
were cued, but nevertheless they maintained significant informa-
tion about the unattended features. Observers’ JNDs were larger
on the catch trials both for the contrast task (average Δ JND=
+5.30% contrast, 95% CI [+3.83, +7.22]) and coherence task (Δ
JND=+45.84%, 95% CI [+26.17, +98.23]) (Fig. 8). These
averages (and subsequent analysis) exclude 4/21 and 1/21
observers for the coherence and contrast tasks, respectively,
because they could not perform the task and their JNDs were not
measurable (i.e., their JND was more than what could be
displayed on the screen).

If observers had a fixed readout that could not switch to the
ignored feature during catch trials, then they would be forced to
use the wrong readout and performance would be extremely
poor. We found that this fixed-readout model predicted much
higher JNDs than measured and therefore could not account for
catch trial behavior. That is, we used the task-response flexible-
readout model to compute the expected JND on catch trials
assuming that observers were unable to switch the readout to
the post-cued feature. For example, for the contrast task in which
the catch trials required making a coherence judgment, we used
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the cortical readout weights for the contrast task (from Eq. 7: βV1,
βV2,…) and vice versa. This model underestimated human
performance on catch trials (dashed lines, Fig. 8). On contrast
catch trials (i.e., post-cued trials when observers reported about
contrast, during a run where the main task was coherence), the
model predicted JND of 56.9%, 95% CI [33.8, 80.1], but the
average observer had a JND of only 10.1% contrast, 95% CI [7.5,
12.7]. On coherence catch trials, the model predicted that

observers would be incapable of performing the task, but the
average observer JND was 40.8% coherence, 95% CI [32.4, 49.2].

Instead, we found that a better explanation for catch trial
behavior came from a readout that could dynamically change
within trials but incurred an additional cost for maintaining
sensory information in working memory. This cost could be due
to a drop in the signal-to-noise of the sensory representation,
perhaps due to responses degrading over time. We estimated the
cost by dividing the thresholds measured during catch trials by
the thresholds measured during regular trials. This approach
suggests that on average σ increased (or responses degraded) for
coherence by a factor of 3.44, 95% CI [2.46, 5.90] and for contrast
by 2.21, 95% CI [1.87, 2.66]. The overlap in estimates suggests a
single cost, i.e., the change from a discrimination task to a
working memory task, might govern the change in performance
for both tasks; averaging the increase in noise gives an estimated
reduction in sensitivity of 2.83, 95% CI [2.31, 4.17]. Thus a model
that allows rapid re-weighting, combined with a fixed cost for
using working memory, can explain behavioral performance for
both contrast and coherence catch trials.

Discussion
We found that observers were able to independently judge the
visibility of patches of moving dots based on either their contrast
or coherence. Concurrent measurements of BOLD activity
showed that there were small changes in sensory representations
during task performance. Cortical responses were somewhat
more sensitive to contrast during contrast discrimination and, in
some areas like MT, more sensitive to coherence during the
coherence task. Our analysis with a fixed-readout linking model
showed that these changes could account for some but not all of
the behavioral performance. A flexible readout of sensory repre-
sentations was necessary to fully capture the behavior. Keeping
representations relatively stable should allow observers to retain
information about unattended features, and we found that during
catch trials this was the case. Our results highlight the importance
of using models that quantify the link between cortical repre-
sentation and perception.

We manipulated the contrast and coherence of random dot
motion stimuli because of the extensive existing knowledge of
how neural representations of these features are related to visual
perception41,43,44,46 and because their similar representation in
cortex48 suggests that changing the representation of one will
necessarily affect the other. Contrast, the average difference

Fig. 7 Comparing fixed- and flexible-readout linking models. a–c Same
conventions as Fig. 2a, b, except curves plot: a the fit of the passive cortical
response with a fixed readout, b the cortical response during task
performance with a fixed readout, and c the cortical response during task
performance with a flexible readout. The fixed-readout model forces any
change in perceptual sensitivity to be the result of differences in sensory
response between tasks by using only a single set of cortical readout
weights (eight weights and one bias term). The flexible-readout model
allows a different set of weights for each task condition (16 weights and 1
bias term). d Tjur’s CD for the models in a–c. Averages are shown as a bar
on the axis. e Conventions as in d for the two-area models with only V1 and
MT. f Model comparison of the cross-validated likelihood ratio (difference
in log-likelihood) between the task-response fixed-readout and task-
response flexible-readout models. Evidence for the fixed-readout model is
plotted to the left and flexible-readout to the right (none of the fits are
in favor of the fixed-readout model). g As in f for Tjur’s CD. Markers in
a–c indicate the average across observers. Markers in d and e indicate
individual observers. Error bars are the 95% confidence intervals. Some
error bars are hidden by the markers
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between bright and dark, and coherence, the percentage of dots
moving in the same direction, both control the visibility of
motion. Human cortical visual areas are known to be sensitive to
these properties such that an increase in visibility results in
monotonically increasing responses throughout the visual
cortex44,48. For observers to judge these two features indepen-
dently, their sensory representations need to be separated
according to context, a step that existing linking models built for
single features have not had to contend with.

The computational steps from sensory representation to per-
ception have been well characterized for contrast discrimination.
In these linking models, an observer’s choice is computed by
comparing the evoked neuronal responses to different stimuli.
Individual neurons exhibit monotonically increasing responses to
contrast56, with different parameterizations that can be pooled
into a population response57. Such population responses to
contrast are well indexed by BOLD signal in human visual
cortex44,58. Linking models have been shown to account for
BOLD signal measurements and perceptual responses during
contrast discrimination tasks43, predict changes in these measures
during surround masking47 and detection27, and have been used
to describe the selection of signals from attended locations3,28.

Our model extends a linking model of contrast
discrimination3,28,43–47 to simultaneous judgments of contrast
and coherence. To separate the intertwined sensory representa-
tions of these features, we allowed a linear weighting of cortical
areas. The weights fit by the model confirmed that the bulk of
information for these simple perceptual decisions was available in
V1 for contrast perception and MT for coherence. This matches
with previous results implicating monkey MT in judgments about
motion41. But the weights also revealed that other areas could
play an important role in perception by suppressing correlated
signals about un-cued features in the readout. Our linking model
is also specific to the random dot stimulus we chose. Changing
the dot density59 or aperture size60–62 can result in decrements or
zero response to increasing coherence, which would necessitate a
linking model specific to those stimulus properties. We chose our
stimulus size, dot density, and dot speed with these concerns in
mind (for additional discussion of how stimulus properties affect
the coherence response, see Birman and Gardner48).

The linking model we developed held only if sensory noise was
modeled as additive but not if variability increased in proportion
with sensory response53. Additive noise appears repeatedly in the
literature using linking models3,28,43,63, in purely psychophysical

approaches49,64, and in measurements of population activity from
voltage-sensitive dyes65. In our results, the Poisson noise model
failed because it combined increasing noise with response func-
tions that saturate48; either of which alone predicts the cumula-
tive normal form of the psychometric functions and a Weber law-
like effect at increasing base stimulus strengths. This result sug-
gests that the noise that limits perceptual behavior is not the
individual variability in firing rate of single neurons, which pre-
sumably is averaged out across a population, but a correlated
source of variability, which is not dependent on response
amplitude.

Our results demonstrate that sensory change due to attention
does not transform the sensory representation directly into a
form that can be used to drive motor responses. Instead,
switching from reporting one stimulus property to another must
change the readout (i.e., weighting of connections), which may
begin to occur in sensory cortices66 but must also extend beyond
them. One possible role for the response gain is that it works
together with changes in readout, acting, as we calculated, as a
weak form of sensory enhancement. Recent theoretical and
experimental results suggest that such changes might improve the
ability of a linear readout to differentiate between stimulus-driven
and internal signals16,67,68. These changes match with our finding
that noise limiting perceptual sensitivity is due to correlated
internal variability. Sensory changes might also drive responses to
be more aligned with the readout dimension69, effectively work-
ing together.

Although for our task the scale of sensory changes provided
only a partial explanation for context-dependent behavioral
reports, this need not always be the case. In the literature on
visual attention, there are many examples of changes in sensory
representation as a result of task demands1–11. We interpret these
results and our own as falling within a continuum where task
demands are implemented by complementary changes in sensory
representation and sensory readout. Sensory effects that can alone
account for behavioral changes would be at one end of this
continuum. For example, measurements of changes in spatial
tuning1,70,71 may underlie bottom–up biases in spatial percep-
tion72, additive shifts in response22,25,26 can be used by efficient
selection mechanisms to account for perceptual threshold
enhancement3,23,28, and changes in correlation structure during
focal spatial attention2 can be sufficient to explain changes in
perceptual sensitivity29,39,69. These spatial attentional effects may
reflect the combination of a fixed sensory readout combined with
changes in representation, which select3,28 and align69 relevant
signals while suppressing others. Similar mechanisms may also
play a role in some kinds of feature-based attention, especially
search73.

Our results suggest that judgments of motion visibility rely on
both a context-dependent readout and changes in sensory
representation, putting our task in a different part of the con-
tinuum described above. Relying on flexible readout could help
maintain adaptability in the face of uncertain task demands. It is
possible that given enough time and task consistency observers
could have shifted their cortical implementation to solve our task
using a fixed readout. This could be done by learning to pre-select
relevant sensory representations, saving computational cost and
speeding decision making. Similarly, sensory representations may
be kept stable for visual features that are relevant for a variety of
behaviors. For example, scene gist is known to survive inatten-
tion, both perceptually74 and as decodable information from
BOLD signal measurements of visual cortex37.

How the human brain implements task demands may depend
not only on the form of sensory representation, the precise task
demands, and the extent of learning but also on the associated
computational costs75. Flexible readout might be implemented by
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parts of prefrontal cortex which re-represent visual information
in a context-dependent manner35 using dynamical properties that
can selectively integrate different features of sensory stimuli36.
Engaging these mechanisms requires resources to represent and
process aspects of sensory stimuli that may not be behaviorally
relevant. Changing sensory representations and using a fixed
readout may instead reflect a computationally efficient solution
where the visual system no longer has to contend with repre-
senting irrelevant stimulus information. In general, the compli-
mentary mechanics of sensory change and change in readout are
both essential tools for the human brain, allowing us to meet the
demands imposed by daily life where constant shifts in attention
are necessary to achieve our goals.

Methods
Observers. In total, 29 observers were subjects for the experiments. All observers
except one (who was an author) were naive to the intent of the experiments. Eight
observers were excluded during initial training sessions due to inability to maintain
appropriate fixation (see “Eye tracking” below). All of the remaining 21 observers
(13 female, 8 male; mean age 28 years; age range 18–55 years) performed the
motion visibility behavioral experiment outside of the scanner. Observers per-
formed up to 6 1-h sessions on separate days for an average of 2467 trials each
(range 1167–3652, standard deviation 497). Ten of the observers (7 female, 3 male;
mean age 26 years; age range 19–36 years) repeated the motion visibility experi-
ment inside the scanner. Observers were scanned in 2 90-min sessions, each
consisting of 8 7-min runs, and a third 1-h scan, which included retinotopy and
anatomical images. Procedures were approved in advance by the Stanford Insti-
tutional Review Board on human participants’ research, and all observers gave
prior written informed consent. Observers wore corrective lenses to correct their
vision to normal when necessary.

Hardware set-up for stimulus and task control. Visual stimuli were generated
using MATLAB (The Mathworks, Inc.) and MGL76. During scanning, stimuli were
displayed via an Eiki LC-WUL100L projector (resolution of 1920 × 1080, refresh-
rate of 100 Hz) on an acrylic sheet mounted inside the scanner bore near the head
coil. Visual stimuli were viewed through a mirror mounted on the head coil and
responses were collected via a magnetic resonance imaging-compatible button box.
Outside the scanner, stimuli were displayed on a 22.5 inch VIEWPixx LCD display
(resolution of 1900 × 1200, refresh rate of 120 Hz) and responses collected via
keyboard. Output luminance was measured for both the projector and the LCD
display with a PR650 spectrometer (Photo Research, Inc.). The gamma table for
each display was dynamically adjusted at the beginning of each trial to linearize the
display luminance such that the full resolution of the 8-bit table could be used to
display the maximum contrast needed. Other sources of light were minimized
during behavior and scanning.

Eye tracking. Eye tracking was performed using an infrared video-based eye-
tracker at 500 Hz (Eyelink 1000; SR Research). Calibration was performed
throughout each session to maintain a validation accuracy of <1 deg average offset
from expected using either a 10-point or 13-point calibration procedure. Trials
were canceled on-line when an observer’s eye position moved >1.5 deg away from
the center of the fixation cross for >300 ms. During training and before data
collection, observers were excluded from further participation if we were unable to
calibrate the eye tracker to an error of <1 deg of visual angle or if their canceled trial
rate did not drop to near zero. After training, canceled trials consisted of <0.1% of
all trials. Owing to technical limitations, eye tracking was not performed inside the
scanner.

Stimulus. Motion stimuli consisted of two patches of random dot stimuli flanking
a central fixation cross (1 × 1 deg). The random dot stimulus patches were rec-
tangular regions extending from 3.5 to 12 deg horizontal and from −7 to 7 deg
vertical on either side of the fixation cross. Each patch was filled with 21 dots deg
−2, 50% brighter, and 50% darker than the gray background (300 cd m−2 in the
scanner and 46 cd m−2 during behavior). All dots moved at 6 deg s−1 updated on
each video frame. Motion strength was adjusted by changing motion coherence: the
percentage of dots that moved in a common direction with all other dots moving in
random directions. Dots were randomly reassigned on each video frame to be
moving in the coherent or random directions. Both patches maintained a constant
baseline in between trials of 25% contrast and incoherent motion. To minimize
involuntary eye movements, the coherent dot motion direction was randomized to
be horizontally inward or outward from fixation on each trial, such that the two
patches moved in opposite directions.

Contrast and coherence tasks. Observers performed a two-alternative forced
choice judgment about the visibility of the two dot patches (Fig. 1). At the start of

each run, observers were shown the word “contrast” or “motion” cueing them to
report which side had the higher contrast or motion coherence, respectively. Each
run began with a 5-s baseline period during behavioral measurements or 30 s
during scanning (25% contrast, 0% coherence) to allow time for adaptation to
occur. Trials consisted of a 0.5-s increment in either or both the contrast and
motion coherence of the dot patches, a variable delay of 0.5–1 s, and a response
period of 1 s. The dot patches then returned to baseline for an inter-trial interval of
0.2–0.4 s randomly sampled from a uniform distribution (2–11 s, sampled from an
exponential distribution during scanning). The base stimulus strength increments
were chosen to be +7.5, +15, +30, and +60% contrast above the baseline 25%
contrast and +15, +30, +45, and +60% coherence above the baseline 0% coher-
ence. On every trial, one dot patch was chosen as the target for contrast and
incremented by an additional small delta, and the same was done independently for
coherence. The target increment for the uncued feature was randomly chosen from
[0.0, 1.8, 2.5, 3.5, 4.9, 6.9, 9.5, 13.3, 18.5%] for contrast and from [0.0, 5.0, 6.9, 9.6,
13.4, 18.6, 25.9, 36.1, 50.2%] for coherence. The relevant target increment was
chosen by a PEST staircase77 to maintain ~82% correct on the cued task for each
base strength (4 base strengths × 2 task conditions= 8 total staircases). Observers
indicated with a button press which side contained the delta increment of the cued
feature. An observer would be at chance performance if they reported on the wrong
feature. Staircases were initialized on the first run (after training) at 25% and 85%
for contrast and coherence, respectively. The staircases were maintained across
sessions, but the step size was reset to one third the threshold every third run to
allow for long-term fluctuation. Before data collection, observers trained on the
task until their performance at all base stimulus strengths was measurable (i.e.,
their threshold converged to <1 minus the base strength), on average 1 h of
training. Behavioral runs lasted 4 min and observers took breaks as needed.
Observers performed up to 6 1-h sessions of behavioral runs spanning
multiple days.

On a subset of the motion visibility experiment runs (two of every five runs),
observers were occasionally asked to report about the non-cued feature (trial
probability 1/7, randomized). We refer to these as catch trials. Stimulus
presentation occurred as normal on catch trials but after stimulus presentation and
a fixed 0.5 s delay, a letter replaced the fixation cross to indicate that the observer
needed to recall and respond about the un-cued feature. The length of the delay
periods in both catch and regular trials (0.5 s and 0.5–1 s, respectively) were chosen
to ensure observers could not rely on iconic memory to complete the task78 and to
avoid observers getting into a rhythm and responding before the post-cue could
appear. On contrast runs, the post-cue letter was an “M” indicating that observers
should recall about motion coherence and on coherence runs a “C” to indicate
contrast. To improve our statistical power in estimating perceptual sensitivity
during catch runs, we used a single base stimulus increment: +30% contrast and
+40% coherence. These base increments were used both for catch and regular trials
on these runs.

Behavioral data analysis. To assess whether the perceptual data could be well
characterized by a signal detection framework we tested the fit of cumulative
normal distributions to the measured psychometric functions. We collapsed data
from all observers across the four base stimulus strengths and separated trials in
which observers discriminated contrast or coherence. We binned data according to
the difference in stimulus strength for each task and computed the probability of
making a rightward choice in each bin (filled circles, Fig. 2a, b). We fit the binned
data with a cumulative normal distribution (three parameters: the mean, μ, stan-
dard deviation, σ, and a lapse rate, λ, which scaled the function so that it spanned
the range λ

2 to 1� λ
2) and evaluated the cross-validated fit on a held-out observer

using the pseudo r2:

r2pseudo ¼ 1� logðLmodelÞ
logðLnullÞ

ð1Þ

where Lmodel is the likelihood of the model given the data and Lnull is the likelihood
of an intercept-only model.

JND (threshold) estimation. To assess perceptual sensitivity, we obtained JNDs
(or thresholds) by fitting a Weibull function to each observer’s data using max-
imum likelihood estimation:

PcorrectðxÞ ¼ γþ ð1� γ� λÞð1� e�ðxτÞβ Þ ð2Þ
where x is the difference in signal (either contrast or coherence) between dot
patches, γ is the guess rate, λ is the lapse rate, β controls the slope of the function,
and τ the value of x at which the function reaches 63% of its maximum. For this
two-alternative forced choice task, the guess rate was 50% while threshold (when d’
= 1) corresponds to ~76% correct. In total, we fit 12 Weibull functions for each
observer: 8 for the contrast and coherence task (4 base strengths × 2 task condi-
tions), 2 for the cued tasks in catch runs (1 base strength × 2 tasks), and 2 for the
catch trials (1 base strength × 2 tasks).

Cortical measurement during task performance. We measured how contrast
and coherence response functions changed in gain or offset compared to passive
fixation in different retinotopically defined cortical visual areas as ten observers
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performed the contrast or the coherence discrimination task. Our general strategy
was based on previous work48 in which we have shown that the relationship
between contrast or coherence and BOLD response can be independently para-
meterized with functional forms, as described below. The analysis proceeded in the
following steps. We first used population-receptive field measurements79 to
determine the location of cortical visual areas in each individual subject. We then
took the timeseries of data averaged across each visual area (for each hemisphere
and subject) and performed an event-related analysis to compute the average
response to the stimulus presented in the contralateral visual field for each of the 16
combinations of base contrast and coherence and 2 task conditions. We computed
the amplitude of response by fitting these event-related responses to a canonical
hemodynamic response measured during passive viewing. We had at least 42
measurements (21 repeats in 2 hemispheres) of each base stimulus combination for
each task condition in each subject. Consistent with our overall conclusion of
flexible readout, comparing these response magnitudes directly between conditions
showed weak if any change between conditions. The 95% CI of the differences
between tasks included zero for almost all conditions (amplitudes were higher
during the contrast task compared the coherence task for 4/16 conditions, aver-
aging over observers). This analysis does not separate out the independent effects of
contrast and coherence across task conditions. So, to gain statistical power and to
establish how these BOLD responses reflect difference in contrast and coherence
response between task conditions, we used the response magnitudes to scale and
shift the contrast and coherence response functions, originally based on data from
passive viewing. These 6 parameter fits (2 gain parameters and 1 offset parameter
for each of the 2 task conditions) were based on ~672 (16 base contrast and
coherence conditions × 42 repeats) trial measurements, which provided sufficient
statistical power and are reported in the main results. Note, for one subject the
contrast and coherence values in the conditions differed: only 12 out of 16 con-
ditions were run, and with slightly different contrast and coherence values, we were
still able to fit the population response function models to this smaller dataset.

All BOLD imaging and data analysis procedures including imaging protocol,
preprocessing, data registration across sessions, retinotopic definition of visual
areas using population-receptive field measurements, and extraction of mean
timeseries from each visual area followed procedures described in detail in Birman
and Gardner48. Briefly, visual area mapping and cortical measurements were
obtained using a multiplexed sequence on a 3-Tesla GE Discovery MR750 (GE
Medical Systems) with a Nova Medical 32-channel head coil. Functional images
were obtained using a whole-brain T2*-weighted two-dimensional gradient-echo
acquisition (field of view (FOV)= 220 mm, repetition time= 500 ms, echo time=
30 ms, flip angle= 46 deg, 7 slices at multiplex 8= 56 total slices, 2.5 mm
isotropic). In addition, two whole-brain high-resolution T1-weighted 3D BRAVO
sequences were acquired (FOV= 240 mm, flip angle= 12 deg, 0.9 mm isotropic)
and averaged to form a canonical anatomical image, which was used for
segmentation, surface reconstruction, session-to-session alignment, and projection
of data onto a flattened cortical surface. Preprocessing was performed using
mrTools80 and included linear trend removal, high pass filtering (cutoff of 0.01
Hz), and motion correction with a rigid body alignment using standard
procedures81. Visual cortical areas V1–V4, V3A/B, V7 (IPS0), and MT (hMT+)
were identified using the population-receptive field method79 and standard
criteria82. Average time courses were obtained for each cortical visual area by
averaging the top 25 task-responsive voxels per area. As documented in Birman
and Gardner48, repeating the analysis using all voxels, the top two voxels, or all
voxels weighted by their population-receptive field overlap with the stimulus results
in a change in the signal-to-noise in the data but did not change the relative
sensitivities across cortical areas.

To compute event-related responses, we assumed that overlapping
hemodynamic events sum linearly, an assumption that has been validated explicitly
for visual responses83. We used a randomized inter-trial interval to avoid
cognitive84 and hemodynamic85 anticipatory effects and to increase the efficiency
of our design86,87. As violations of linearity have been noted with shorter inter-trial
intervals, we chose a mean inter-trial interval of 6 s, sampled from an exponential
with a range of 2–11 s, intended to minimize the overlap in the main positive lobe
of the hemodynamic response between different events. Moreover, we used a
balanced design in which each trial was equally likely to be followed by a trial with
any of the other base stimulus strengths to minimize any systematic misestimation.
We confirmed that the probability of each condition being followed by any other
was roughly equal, i.e. χ2(r, 15) > 0.05, where r was the test statistic computed by
comparing the distribution of trial types following each individual trial type against
a uniform distribution. No catch trials were run during scanning.

We computed event-related responses for each trial type using a finite-impulse
response model84. We assumed each combination of different base strengths for
contrast and coherence evoked a different hemodynamic response and responses
that overlapped in time summed linearly. Because each visual stimulus was
lateralized in one half of the visual field, we assumed that they evoked a response
only in contralateral retinotopic areas. There were four base increments for
contrast (+7.5, +15, +30, and +60%) and four base increments for coherence
(+15, +30, +45, and +60%), which were independently manipulated, resulting in
32 total conditions (4 contrast × 4 coherences × 2 task conditions). To model these
data, we used the following equation:

y ¼ Xβþ ϵ ð3Þ

where y was an n × 1 column vector (n= number of volumes) containing the
measured hemodynamic response for one hemifield of one visual area in a single
observer. X was an n × (k × c) stimulus convolution matrix (c= number of
conditions, k= length in volumes of hemodynamic response to calculate), β was a
(k × c) × 1 column vector to be estimated, and ϵ the residual variance (assumed to
be 0 mean Gaussian). Each block of k columns in X corresponded to one of the c
conditions. These blocks contained a one in the first column at the starting volume
of each occurrence of a trial of that condition and zeroes elsewhere. Each of the
subsequent k columns was then shifted downwards by one to form a Toeplitz
matrix for that condition. In total, X had n rows, equal to the length of the BOLD
timeseries (for most observers, n was 13,184), and 2592 columns (k= 81 × c= 32,
where k was chosen to compute 40.5 s of response and the c conditions were the 4
contrast base strengths × 4 coherence base strengths × 2 tasks). By computing the
least-squares estimate of the column vector β, we obtained the estimated event-
related response to each condition accounting linearly for overlap in time. On every
trial, one dot patch was at a base strength and one had an additional increment. To
equate difficulty throughout the task, we allowed the additional increments to vary
continuously via staircasing. To simplify the estimation problem and to improve
statistical power, we rounded the base+ increment values to the nearest base
strength. The choice of number of volumes of response k to compute did not
change the result as long as it was sufficiently large to capture the full
hemodynamic response. The Pearson’s correlation of the first 41 volumes between
an analysis with k= 41 (20.5 s of response) and k= 81 (40.5 s of response) was r=
0.97. Because we randomized trial presentation, we assessed multicollinearity by
checking that the stimulus convolution matrices (see below) were full rank and that
the off-diagonal elements of the covariance matrix were small (<0.1% of off-
diagonal elements were >10% of the on-diagonal elements).

To obtain a response magnitude, we fit a scaled canonical hemodynamic
response function to the event-related responses. We used a canonical
hemodynamic response function that was measured in previous work when
observers passively viewed the same stimulus48. This function took the form of a
difference-of-gamma function whose maximum amplitude was set to one. We fit a
single magnitude per condition, which scaled this canonical function to minimize
the sum of squared error between the event-related response and the scaled
canonical function. For each condition (4 contrast base strengths × 4 coherence
base strengths × 2 tasks), this gave us a scalar response amplitude for the evoked
activity in each cortical area.

The response magnitudes for each contrast, coherence, and task condition were
next used to estimate how population response functions for contrast and
coherence in different visual areas changed in gain and offset during task
performance. In our previous work, we parameterized the population response to
contrast as a sigmoid function:56

RconðsconÞ ¼ αcon
s1:9con

s1:6con þ σ1:6

� �
ð4Þ

where α was the maximum amplitude and σ controlled the shape of the function.
The exponents in the function were chosen according to previous work43. The
population response function to coherence was parameterized to be a saturating
nonlinear function:

RcohðscohÞ ¼ αcoh 1� e
scoh
κ

� �
ð5Þ

where the parameter κ controls the shape of the function by setting the point at
which the exponential function reaches 63% of its maximum and αcoh controls the
amplitude. Large values of αcoh combined with large values of κ make this function
approach linear in the range [0 1] in which the stimulus strength scoh is bounded.
Because αcoh and κ are not interpretable on their own, we instead report the linear
slope of the coherence response functions as a measure of sensitivity (see Birman
and Gardner48, for rationale).

We fit the population response functions for each cortical area to the 32
measurements of response magnitude (4 base contrasts × 4 base coherences × 2 task
conditions) during task performance:

Rareaðscon; scohÞ ¼ Rarea;conðsconÞ þ Rarea;cohðscohÞ þ αtask ð6Þ
We added the αtask parameter to fit additive offset while allowing the αcon

(Eq. 4) and αcoh (Eq. 5) parameters to change to fit multiplicative gain. The
parameters for the response functions were initialized according to the passive
viewing data in Birman and Gardner48 with the σ and κ parameters held constant
such that response functions maintained their shape. For reference, the initial αcon
parameter in V1 was 1.68, V2: 0.69, V3: 0.63, V4: 0.61, V3A: 0.35, V3B: 0.24, V7:
0.32, and MT: 0.22. The initial slope of the coherence response function in V1 was
0.07% signal change/unit coherence, V2: 0.16, V3: 0.18, V4: 0.11, V3A: 0.25, V3B:
0.14, V7: 0.20, MT: 0.34. For each cortical area, there were six free parameters (3
parameters × 2 task conditions) fit by minimizing the sum of squared error using
the MATLAB function lsqnonlin.

Linking model. To link cortical responses to the perception of motion visibility, we
modeled the decision process of an observer as a comparison of linearly weighted
responses from retinotopically defined visual cortical areas subject to additive
Gaussian noise. The model assumed the form of a probit regression in which the
difference in weighted cortical responses for the two stimuli were passed through a
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cumulative normal distribution to make a trial-by-trial prediction of a choice for
the stimulus on the right (Fig. 4). The response to each visual stimulus for each
cortical visual area was calculated from the parametric forms of population
response functions for contrast and coherence, as defined above. When validating
the model assumptions such as additive noise and lack of choice history terms, we
used the parameters for the population response functions that were fit to passive
viewing data48. To test whether fixed or flexible readouts were needed to explain
task performance, we used parameters for the population response functions fit to
BOLD data collected during task performance, as described above. The linking
model parameters that were fit by maximum likelihood estimation to the beha-
vioral data were the weights for each visual area (in different versions of the model,
we either fit all eight visual areas or subsets of visual areas) and a bias term to
account for any propensity to choose one side over the other. For the fixed readout,
there was one set of cortical weights for both tasks, and for the flexible readout,
there were two sets of weights, one for each task. We describe in more detail the
specifics of the model below.

We used the population response functions (Eqs. 4 and 5) to simulate the trial-
by-trial response of visual cortical areas to stimuli in the contralateral hemifield
(Eq. 6). The parameters of the functions were either from the fit to passive viewing
data or during task performance. Summing the response for contrast and
coherence assumes that the responses to contrast and coherence are independent of
each other, which we showed to be the case in Birman and Gardner48.

To obtain the “readout” of this representation from multiple cortical areas, we
proceeded by linearly weighting the area responses (Fig. 4). The full readout with
all visual areas was computed with the following equation:

Rpatchðscon; scohÞ¼ βV1RV1ðscon; scohÞ þ βV2RV2ðscon; scohÞ þ :::þ βMTRMTðscon; scohÞ
ð7Þ

where the response for each area on the right side of the equation is computed
according to Eq. 6. Each β was a free parameter, which set the weight assigned to
cortical areas in the readout process. We use the phrase fixed readout to refer to a
model in which there are eight cortical readout weights in total (one for each
cortical area) shared across the two task conditions. Implicitly the fixed readout
model therefore assumes that the measured cortical responses must differ between
task conditions to accommodate changes in behavior. We use the phrase flexible
readout when 16 weights were allowed, i.e., a separate weight for each task for each
cortical area. In addition to the eight cortical area models, we also fit models in
which we only used the response of areas V1 and MT, the most contrast and
coherence sensitive human cortical areas, respectively48.

To compute the probability of an observer choosing the stimulus on the right,
we passed the difference in response to the two stimuli through a cumulative
normal distribution51:

Pright scon;left; scon;right; scoh;left; scoh;right
� �

¼ ΦðRrightðscon;right; scoh;rightÞ
�Rleftðscon;left; scoh;leftÞ þ βbiasÞ

ð8Þ

where Rright and Rleft are the weighted cortical responses to the two stimuli on each
trial, as calculated using Eq. 7. βbias accounts for bias to one side and Φ is the
cumulative probability of a normal distribution with μ= 0 and σ= 1.

In the linking model, we allowed an additional parameter λ to capture the
observer's lapse rate, modifying Eq. 8:

Pright s¼ ; λð Þ ¼ λ

2
þ ð1� λÞΦðRrightðs¼ Þ � Rleftðs¼ Þ þ βbiasÞ ð9Þ

We empirically estimated the lapse rate by finding the rate of observer errors on
trials with a stimulus strength far above threshold. Because we occasionally reset
the step size in the staircases, we were able to record a non-negligible number of
trials with large stimulus increments, from these we selected trials in which the
increment was at least 15% for contrast or 40% for coherence, which corresponded
to increments of at least 2× threshold (15% and 40% also correspond to the
maximum increment, which could be shown at the highest base strength of
contrast and coherence, respectively). Computed in this way, λ varied from 0% to
7% (mean 3.0%, 95% CI [1.94, 4.56]).

We fit all variants of the linking model with maximum likelihood estimation
using the active-set algorithm as implemented by the function fmincon in
MATLAB. To avoid getting trapped in local minima, we randomized the starting
parameters and repeated the fitting procedure multiple times.

We fit the linking model both within observers and across observers to test for
generalization. Several observers were involved in both the experiments reported
here as well those reported in Birman and Gardner48 and so their linking models
could be fit within observer. To ensure generalization, we also computed the
average population response functions and used those to fit the linking model to
the individual perceptual measurements from each of the 21 observers, including
those who did not have within-subject measurements of cortical responses. For the
population response functions estimated from passive viewing data, the averaged-
physiology and within-subject models had similar cross-validated log-likelihoods,

log
Laverage

Lwithin

� �
¼ �2:22, 95% CI [−8.18, 4.71]. This suggests that the population

response functions were similar across subjects and that noise in the physiological
measurements is reduced by averaging across observers. For the measurements
during task performance, there was a large improvement from using averaged-

physiology data, log
Laverage

Lwithin

� �
¼ 34:6, 95% CI [−6.4, 185.4], presumably due to the

lower signal-to-noise ratio in those data because the stimulus was limited to 0.5 s.

Linking model variants. To capture bias due to past choices54,55, we tested models
with additional stay/switch bias parameters. We added four additional parameters
—two that absorbed bias after correct responses (usually found to be a bias toward
the same side) and two that absorbed bias after incorrect responses (usually found
to be switching after errors). For clarity, we show Eq. 8 modified, but this model
was still fit with the lapse rate (Eq. 9):

Prightðs¼ Þ ¼ ΦðRright scon; scohð Þ � Rleft scon; scohð Þ þ βbias þ βleft;correctCleft

þβright;correctCright þ βleft;incorrectIleft þ βright;incorrectIrightÞ
ð10Þ

where C and I are binary variables set by whether the last trial was correct or
incorrect, respectively, and had a response on the corresponding side (i.e., Cleft= 1
if the observer chose left on the last trial and was correct).

We also fit an efficient selection variant of the linking model where responses
are weighted according to their magnitude during active viewing3,28. In this version
of the model, the responses in each cortical area were raised to an exponent ρ,
multiplied by the cortical readout weights, and then the exponent root was taken
before passing through the cumulative normal. The effect of this transformation is
that an area which has a larger base response, through the exponential, will
dominate the final signal. Again, for clarity we show this modification for Eq. 8 but
the full model included lapse rates (Eq. 9):

Prightðs¼ Þ ¼ Φ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rrightðscon; scohÞρ � Rleftðscon; scohÞρ þ βbias

ρ

q� �
ð11Þ

The linking model described so far makes the assumption that sensory noise
limiting perception is additive, i.e., independent of stimulus strength, but we also
tested a variation with noise that increased with sensory response strength. If
readout was limited by the variability of individual or small groups of correlated
neurons, we might expect sensitivity to be subject to noise, which increases with
response. We tested this Poisson variant of the model by setting the variance of the
noise (i.e., σ2 in Eq. 8) to the average population response in the two dot patches,
prior to being passed through the readout weights. Following the equations above,
this computation is done by averaging the response across areas for each dot patch:

σ2patch ¼ RV1 þ RV2 ¼ þ RMT

N
ð12Þ

where N is the number of areas averaged and Rarea is computed using Eq. 6. We
based the noise on the signal prior to readout under the assumption that Poisson
noise would be generated by spiking variability occurring in the sensory system.

Interpreting linking model parameters. Using the fit model parameters, we were
able to determine an estimate of the magnitude of noise limiting an observer’s
perceptual sensitivity in units of BOLD percent signal change. Because we set σ= 1
in the cumulative normal function of Eq. 7, we can estimate the noise in the
sensory representation from the weight parameters. According to Eq. 8, a unit
input difference between Rright and Rleft will allow the observer to achieve threshold
performance. It follows then that the β weights (Eq. 7) can be interpreted as scaling
the raw BOLD responses such that a unit difference in weighted response gives rise
to threshold performance. Assuming a standard signal-detection model where
perceptual sensitivity (d’) is equal to the difference in responses divided by the
standard deviation of the noise, a small β weight would suggest a large amount of
noise is limiting perception as it would take a very large difference in response to
get threshold performance. Conversely, a large β weight would suggest the oppo-
site, that only small differences in response are needed for threshold performance.
More formally, if one considers just one area, such as V1:

Threshold performance d′ ¼ 1ð Þ ¼
RV1;right � RV1;left

� �
σV1

¼ βV1ðRV1;right � RV1;leftÞ

ð13Þ
Therefore, the β weights are inversely proportional to the implied neural noise,

σ, of the representation, which limits perception.
To recover the model’s JNDs (Fig. 2), we proceeded analytically. As described

above, because we fit the additive noise model with the noise parameter σ= 1 the
population response functions, after scaling by the beta weights, are in units of
standard deviations. To find the JND relative to a base stimulus strength, we
calculated the increment in signal needed to increase the readout response by one,
equivalent to d’= 1. This is because when σ= 1 we can reduce

d′ ¼ 1 ¼ Rðbaseþ incrementÞ � RðbaseÞ
σ

ð14Þ

to simply

Rðbaseþ incrementÞ � RðbaseÞ ¼ 1: ð15Þ

Model comparison. To compare the different variants of the linking model, we
used the cross-validated log-likelihood ratio and Tjur’s coefficient of
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discrimination52. Each variation of the linking model was fit in a ten-fold cross-
validation procedure. In all, 10% of the data was reserved for validation while the
remaining 90% was used to train. The log-likelihood was computed for each
validation set and summed across all ten-folds. To compare any two variations of
the linking model, we computed their likelihood ratio (i.e., the difference in total
log-likelihood). The cross-validated log-likelihood ratio is similar in principle to
measures of information criterion and sometimes referred to as the cross-validated
information criterion. When the difference in this statistic between two models is
large, e.g., >10, it indicates a substantial improvement in model fit. We use the
cross-validated log-likelihood ratio rather than other information criterions (e.g.,
Akaike information criterion or Bayesian information criterion) because the cross-
validation procedure already penalizes models with additional parameters for over-
fitting. Although the cross-validated log-likelihood is useful for model comparison,
it is difficult to interpret its absolute magnitude in isolation. To help with inter-
pretation, we also report the cross-validated coefficient of discrimination CD.

CD ¼ μright � μleft ð16Þ
where μright is the model’s average predicted likelihood (Eq. 9) of a rightward
choice for validation trials when the observer chose right and μleft when the
observer chose left. If the model predicts choices perfectly, then μright would be 1
and μleft would be 0, giving a value for CD of 1. If the model is at chance at
predicting choices, then CD would be 0. CD therefore indexes the difference
between the centers of the trial-by-trial prediction distributions, and although not a
true measure of variance explained, it shares many of the properties of r2 and is
interpretable in a similar manner52.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The BOLD imaging and behavioral data that support the findings of this study are
available in the Open Science Framework with the identifier 10.17605/OSF.IO/J6TMA.

Code availability
Code to reproduce the main findings is included with the data. The full code to
reproduce all figures and results are available on Github with the identifier 10.5281/
zenodo.2805507.
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